| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐾 ∈ ℤ → ( 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) ) |
| 4 |
3
|
biimpa |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 ) |
| 5 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 6 |
|
2cnd |
⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) |
| 7 |
|
picn |
⊢ π ∈ ℂ |
| 8 |
7
|
a1i |
⊢ ( 𝑛 ∈ ℤ → π ∈ ℂ ) |
| 9 |
5 6 8
|
mulassd |
⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) · π ) = ( 𝑛 · ( 2 · π ) ) ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · ( 2 · π ) ) = ( ( 𝑛 · 2 ) · π ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( 𝑛 · ( 2 · π ) ) = ( ( 𝑛 · 2 ) · π ) ) |
| 12 |
|
oveq1 |
⊢ ( ( 𝑛 · 2 ) = 𝐾 → ( ( 𝑛 · 2 ) · π ) = ( 𝐾 · π ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( ( 𝑛 · 2 ) · π ) = ( 𝐾 · π ) ) |
| 14 |
11 13
|
eqtr2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( 𝐾 · π ) = ( 𝑛 · ( 2 · π ) ) ) |
| 15 |
14
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = ( cos ‘ ( 𝑛 · ( 2 · π ) ) ) ) |
| 16 |
|
cos2kpi |
⊢ ( 𝑛 ∈ ℤ → ( cos ‘ ( 𝑛 · ( 2 · π ) ) ) = 1 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝑛 · ( 2 · π ) ) ) = 1 ) |
| 18 |
15 17
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = 1 ) |
| 19 |
18
|
3adant1 |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = 1 ) |
| 20 |
|
iftrue |
⊢ ( 2 ∥ 𝐾 → if ( 2 ∥ 𝐾 , 1 , - 1 ) = 1 ) |
| 21 |
20
|
eqcomd |
⊢ ( 2 ∥ 𝐾 → 1 = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → 1 = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 23 |
19 22
|
eqtrd |
⊢ ( ( 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 · 2 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 24 |
23
|
3exp |
⊢ ( 2 ∥ 𝐾 → ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
| 26 |
25
|
rexlimdv |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 2 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) |
| 27 |
4 26
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ 2 ∥ 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 28 |
|
odd2np1 |
⊢ ( 𝐾 ∈ ℤ → ( ¬ 2 ∥ 𝐾 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) ) |
| 29 |
28
|
biimpa |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) |
| 30 |
6 5
|
mulcld |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 31 |
|
1cnd |
⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℂ ) |
| 32 |
30 31 8
|
adddird |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) · π ) = ( ( ( 2 · 𝑛 ) · π ) + ( 1 · π ) ) ) |
| 33 |
6 5
|
mulcomd |
⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) = ( 𝑛 · 2 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) · π ) = ( ( 𝑛 · 2 ) · π ) ) |
| 35 |
34 9
|
eqtrd |
⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) · π ) = ( 𝑛 · ( 2 · π ) ) ) |
| 36 |
7
|
mullidi |
⊢ ( 1 · π ) = π |
| 37 |
36
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 1 · π ) = π ) |
| 38 |
35 37
|
oveq12d |
⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) · π ) + ( 1 · π ) ) = ( ( 𝑛 · ( 2 · π ) ) + π ) ) |
| 39 |
|
2cn |
⊢ 2 ∈ ℂ |
| 40 |
39 7
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 41 |
40
|
a1i |
⊢ ( 𝑛 ∈ ℤ → ( 2 · π ) ∈ ℂ ) |
| 42 |
5 41
|
mulcld |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · ( 2 · π ) ) ∈ ℂ ) |
| 43 |
42 8
|
addcomd |
⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · ( 2 · π ) ) + π ) = ( π + ( 𝑛 · ( 2 · π ) ) ) ) |
| 44 |
32 38 43
|
3eqtrrd |
⊢ ( 𝑛 ∈ ℤ → ( π + ( 𝑛 · ( 2 · π ) ) ) = ( ( ( 2 · 𝑛 ) + 1 ) · π ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( π + ( 𝑛 · ( 2 · π ) ) ) = ( ( ( 2 · 𝑛 ) + 1 ) · π ) ) |
| 46 |
|
oveq1 |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( ( ( 2 · 𝑛 ) + 1 ) · π ) = ( 𝐾 · π ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( ( ( 2 · 𝑛 ) + 1 ) · π ) = ( 𝐾 · π ) ) |
| 48 |
45 47
|
eqtr2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( 𝐾 · π ) = ( π + ( 𝑛 · ( 2 · π ) ) ) ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = ( cos ‘ ( π + ( 𝑛 · ( 2 · π ) ) ) ) ) |
| 50 |
|
cosper |
⊢ ( ( π ∈ ℂ ∧ 𝑛 ∈ ℤ ) → ( cos ‘ ( π + ( 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
| 51 |
7 50
|
mpan |
⊢ ( 𝑛 ∈ ℤ → ( cos ‘ ( π + ( 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( π + ( 𝑛 · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
| 53 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
| 54 |
53
|
a1i |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ π ) = - 1 ) |
| 55 |
49 52 54
|
3eqtrd |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = - 1 ) |
| 56 |
55
|
3adant1 |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = - 1 ) |
| 57 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝐾 → if ( 2 ∥ 𝐾 , 1 , - 1 ) = - 1 ) |
| 58 |
57
|
eqcomd |
⊢ ( ¬ 2 ∥ 𝐾 → - 1 = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 59 |
58
|
3ad2ant1 |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → - 1 = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 60 |
56 59
|
eqtrd |
⊢ ( ( ¬ 2 ∥ 𝐾 ∧ 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 61 |
60
|
3exp |
⊢ ( ¬ 2 ∥ 𝐾 → ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) ) |
| 63 |
62
|
rexlimdv |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝐾 → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) ) |
| 64 |
29 63
|
mpd |
⊢ ( ( 𝐾 ∈ ℤ ∧ ¬ 2 ∥ 𝐾 ) → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |
| 65 |
27 64
|
pm2.61dan |
⊢ ( 𝐾 ∈ ℤ → ( cos ‘ ( 𝐾 · π ) ) = if ( 2 ∥ 𝐾 , 1 , - 1 ) ) |