| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
divides |
|
| 3 |
1 2
|
mpan |
|
| 4 |
3
|
biimpa |
|
| 5 |
|
zcn |
|
| 6 |
|
2cnd |
|
| 7 |
|
picn |
|
| 8 |
7
|
a1i |
|
| 9 |
5 6 8
|
mulassd |
|
| 10 |
9
|
eqcomd |
|
| 11 |
10
|
adantr |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
adantl |
|
| 14 |
11 13
|
eqtr2d |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
cos2kpi |
|
| 17 |
16
|
adantr |
|
| 18 |
15 17
|
eqtrd |
|
| 19 |
18
|
3adant1 |
|
| 20 |
|
iftrue |
|
| 21 |
20
|
eqcomd |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
19 22
|
eqtrd |
|
| 24 |
23
|
3exp |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
rexlimdv |
|
| 27 |
4 26
|
mpd |
|
| 28 |
|
odd2np1 |
|
| 29 |
28
|
biimpa |
|
| 30 |
6 5
|
mulcld |
|
| 31 |
|
1cnd |
|
| 32 |
30 31 8
|
adddird |
|
| 33 |
6 5
|
mulcomd |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34 9
|
eqtrd |
|
| 36 |
7
|
mullidi |
|
| 37 |
36
|
a1i |
|
| 38 |
35 37
|
oveq12d |
|
| 39 |
|
2cn |
|
| 40 |
39 7
|
mulcli |
|
| 41 |
40
|
a1i |
|
| 42 |
5 41
|
mulcld |
|
| 43 |
42 8
|
addcomd |
|
| 44 |
32 38 43
|
3eqtrrd |
|
| 45 |
44
|
adantr |
|
| 46 |
|
oveq1 |
|
| 47 |
46
|
adantl |
|
| 48 |
45 47
|
eqtr2d |
|
| 49 |
48
|
fveq2d |
|
| 50 |
|
cosper |
|
| 51 |
7 50
|
mpan |
|
| 52 |
51
|
adantr |
|
| 53 |
|
cospi |
|
| 54 |
53
|
a1i |
|
| 55 |
49 52 54
|
3eqtrd |
|
| 56 |
55
|
3adant1 |
|
| 57 |
|
iffalse |
|
| 58 |
57
|
eqcomd |
|
| 59 |
58
|
3ad2ant1 |
|
| 60 |
56 59
|
eqtrd |
|
| 61 |
60
|
3exp |
|
| 62 |
61
|
adantl |
|
| 63 |
62
|
rexlimdv |
|
| 64 |
29 63
|
mpd |
|
| 65 |
27 64
|
pm2.61dan |
|