| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
divides |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
| 3 |
1 2
|
mpan |
|- ( K e. ZZ -> ( 2 || K <-> E. n e. ZZ ( n x. 2 ) = K ) ) |
| 4 |
3
|
biimpa |
|- ( ( K e. ZZ /\ 2 || K ) -> E. n e. ZZ ( n x. 2 ) = K ) |
| 5 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 6 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
| 7 |
|
picn |
|- _pi e. CC |
| 8 |
7
|
a1i |
|- ( n e. ZZ -> _pi e. CC ) |
| 9 |
5 6 8
|
mulassd |
|- ( n e. ZZ -> ( ( n x. 2 ) x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
| 10 |
9
|
eqcomd |
|- ( n e. ZZ -> ( n x. ( 2 x. _pi ) ) = ( ( n x. 2 ) x. _pi ) ) |
| 11 |
10
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( n x. ( 2 x. _pi ) ) = ( ( n x. 2 ) x. _pi ) ) |
| 12 |
|
oveq1 |
|- ( ( n x. 2 ) = K -> ( ( n x. 2 ) x. _pi ) = ( K x. _pi ) ) |
| 13 |
12
|
adantl |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( ( n x. 2 ) x. _pi ) = ( K x. _pi ) ) |
| 14 |
11 13
|
eqtr2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( K x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
| 15 |
14
|
fveq2d |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = ( cos ` ( n x. ( 2 x. _pi ) ) ) ) |
| 16 |
|
cos2kpi |
|- ( n e. ZZ -> ( cos ` ( n x. ( 2 x. _pi ) ) ) = 1 ) |
| 17 |
16
|
adantr |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( n x. ( 2 x. _pi ) ) ) = 1 ) |
| 18 |
15 17
|
eqtrd |
|- ( ( n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = 1 ) |
| 19 |
18
|
3adant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = 1 ) |
| 20 |
|
iftrue |
|- ( 2 || K -> if ( 2 || K , 1 , -u 1 ) = 1 ) |
| 21 |
20
|
eqcomd |
|- ( 2 || K -> 1 = if ( 2 || K , 1 , -u 1 ) ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> 1 = if ( 2 || K , 1 , -u 1 ) ) |
| 23 |
19 22
|
eqtrd |
|- ( ( 2 || K /\ n e. ZZ /\ ( n x. 2 ) = K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 24 |
23
|
3exp |
|- ( 2 || K -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 25 |
24
|
adantl |
|- ( ( K e. ZZ /\ 2 || K ) -> ( n e. ZZ -> ( ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 26 |
25
|
rexlimdv |
|- ( ( K e. ZZ /\ 2 || K ) -> ( E. n e. ZZ ( n x. 2 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
| 27 |
4 26
|
mpd |
|- ( ( K e. ZZ /\ 2 || K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 28 |
|
odd2np1 |
|- ( K e. ZZ -> ( -. 2 || K <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) ) |
| 29 |
28
|
biimpa |
|- ( ( K e. ZZ /\ -. 2 || K ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = K ) |
| 30 |
6 5
|
mulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
| 31 |
|
1cnd |
|- ( n e. ZZ -> 1 e. CC ) |
| 32 |
30 31 8
|
adddird |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( ( ( 2 x. n ) x. _pi ) + ( 1 x. _pi ) ) ) |
| 33 |
6 5
|
mulcomd |
|- ( n e. ZZ -> ( 2 x. n ) = ( n x. 2 ) ) |
| 34 |
33
|
oveq1d |
|- ( n e. ZZ -> ( ( 2 x. n ) x. _pi ) = ( ( n x. 2 ) x. _pi ) ) |
| 35 |
34 9
|
eqtrd |
|- ( n e. ZZ -> ( ( 2 x. n ) x. _pi ) = ( n x. ( 2 x. _pi ) ) ) |
| 36 |
7
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 37 |
36
|
a1i |
|- ( n e. ZZ -> ( 1 x. _pi ) = _pi ) |
| 38 |
35 37
|
oveq12d |
|- ( n e. ZZ -> ( ( ( 2 x. n ) x. _pi ) + ( 1 x. _pi ) ) = ( ( n x. ( 2 x. _pi ) ) + _pi ) ) |
| 39 |
|
2cn |
|- 2 e. CC |
| 40 |
39 7
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 41 |
40
|
a1i |
|- ( n e. ZZ -> ( 2 x. _pi ) e. CC ) |
| 42 |
5 41
|
mulcld |
|- ( n e. ZZ -> ( n x. ( 2 x. _pi ) ) e. CC ) |
| 43 |
42 8
|
addcomd |
|- ( n e. ZZ -> ( ( n x. ( 2 x. _pi ) ) + _pi ) = ( _pi + ( n x. ( 2 x. _pi ) ) ) ) |
| 44 |
32 38 43
|
3eqtrrd |
|- ( n e. ZZ -> ( _pi + ( n x. ( 2 x. _pi ) ) ) = ( ( ( 2 x. n ) + 1 ) x. _pi ) ) |
| 45 |
44
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( _pi + ( n x. ( 2 x. _pi ) ) ) = ( ( ( 2 x. n ) + 1 ) x. _pi ) ) |
| 46 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = K -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( K x. _pi ) ) |
| 47 |
46
|
adantl |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( ( ( 2 x. n ) + 1 ) x. _pi ) = ( K x. _pi ) ) |
| 48 |
45 47
|
eqtr2d |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( K x. _pi ) = ( _pi + ( n x. ( 2 x. _pi ) ) ) ) |
| 49 |
48
|
fveq2d |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) ) |
| 50 |
|
cosper |
|- ( ( _pi e. CC /\ n e. ZZ ) -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
| 51 |
7 50
|
mpan |
|- ( n e. ZZ -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
| 52 |
51
|
adantr |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( _pi + ( n x. ( 2 x. _pi ) ) ) ) = ( cos ` _pi ) ) |
| 53 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
| 54 |
53
|
a1i |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` _pi ) = -u 1 ) |
| 55 |
49 52 54
|
3eqtrd |
|- ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = -u 1 ) |
| 56 |
55
|
3adant1 |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = -u 1 ) |
| 57 |
|
iffalse |
|- ( -. 2 || K -> if ( 2 || K , 1 , -u 1 ) = -u 1 ) |
| 58 |
57
|
eqcomd |
|- ( -. 2 || K -> -u 1 = if ( 2 || K , 1 , -u 1 ) ) |
| 59 |
58
|
3ad2ant1 |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> -u 1 = if ( 2 || K , 1 , -u 1 ) ) |
| 60 |
56 59
|
eqtrd |
|- ( ( -. 2 || K /\ n e. ZZ /\ ( ( 2 x. n ) + 1 ) = K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 61 |
60
|
3exp |
|- ( -. 2 || K -> ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 62 |
61
|
adantl |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) ) |
| 63 |
62
|
rexlimdv |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = K -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) ) |
| 64 |
29 63
|
mpd |
|- ( ( K e. ZZ /\ -. 2 || K ) -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |
| 65 |
27 64
|
pm2.61dan |
|- ( K e. ZZ -> ( cos ` ( K x. _pi ) ) = if ( 2 || K , 1 , -u 1 ) ) |