| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ♯ ‘ 𝑊 )  ∈  ℙ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℙ ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  𝐿  ∈  ℤ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 5 |  | simpr2 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0 ) | 
						
							| 6 | 2 4 5 | 3jca | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℙ  ∧  𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℙ  ∧  𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 |  | modprmn0modprm0 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℙ  ∧  𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0 )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 ) ) | 
						
							| 10 | 7 8 9 | sylc | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ·  𝐿 )  =  ( 𝑗  ·  𝐿 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑖  +  ( 𝑘  ·  𝐿 ) )  =  ( 𝑖  +  ( 𝑗  ·  𝐿 ) ) ) | 
						
							| 13 | 12 | fvoveq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑘  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑘  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 16 | 15 3 | anim12i | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 19 |  | simpr3 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) | 
						
							| 20 | 19 | anim1i | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 22 |  | cshweqrep | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℤ )  →  ( ( ( 𝑊  cyclShift  𝐿 )  =  𝑊  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑘  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 23 | 18 21 22 | sylc | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑘  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 24 |  | elfzonn0 | ⊢ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 26 | 14 23 25 | rspcdva | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  →  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 30 | 26 29 | eqtrd | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  ∧  ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0 )  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 32 | 31 | rexlimiva | ⊢ ( ∃ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑖  +  ( 𝑗  ·  𝐿 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  0  →  ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 33 | 10 32 | mpcom | ⊢ ( ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 35 |  | repswsymballbi | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  ( 𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 37 | 34 36 | mpbird | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  ∧  ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 ) )  →  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 | 37 | ex | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  ∈  ℙ )  →  ( ( 𝐿  ∈  ℤ  ∧  ( 𝐿  mod  ( ♯ ‘ 𝑊 ) )  ≠  0  ∧  ( 𝑊  cyclShift  𝐿 )  =  𝑊 )  →  𝑊  =  ( ( 𝑊 ‘ 0 )  repeatS  ( ♯ ‘ 𝑊 ) ) ) ) |