| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( # ` W ) e. Prime ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( # ` W ) e. Prime ) | 
						
							| 3 |  | simp1 |  |-  ( ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) -> L e. ZZ ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> L e. ZZ ) | 
						
							| 5 |  | simpr2 |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( L mod ( # ` W ) ) =/= 0 ) | 
						
							| 6 | 2 4 5 | 3jca |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( ( # ` W ) e. Prime /\ L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( # ` W ) e. Prime /\ L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 9 |  | modprmn0modprm0 |  |-  ( ( ( # ` W ) e. Prime /\ L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 ) -> ( i e. ( 0 ..^ ( # ` W ) ) -> E. j e. ( 0 ..^ ( # ` W ) ) ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) ) | 
						
							| 10 | 7 8 9 | sylc |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> E. j e. ( 0 ..^ ( # ` W ) ) ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) | 
						
							| 11 |  | oveq1 |  |-  ( k = j -> ( k x. L ) = ( j x. L ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( k = j -> ( i + ( k x. L ) ) = ( i + ( j x. L ) ) ) | 
						
							| 13 | 12 | fvoveq1d |  |-  ( k = j -> ( W ` ( ( i + ( k x. L ) ) mod ( # ` W ) ) ) = ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( k = j -> ( ( W ` i ) = ( W ` ( ( i + ( k x. L ) ) mod ( # ` W ) ) ) <-> ( W ` i ) = ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 15 |  | simpl |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> W e. Word V ) | 
						
							| 16 | 15 3 | anim12i |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( W e. Word V /\ L e. ZZ ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W e. Word V /\ L e. ZZ ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W e. Word V /\ L e. ZZ ) ) | 
						
							| 19 |  | simpr3 |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( W cyclShift L ) = W ) | 
						
							| 20 | 19 | anim1i |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift L ) = W /\ i e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W cyclShift L ) = W /\ i e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 22 |  | cshweqrep |  |-  ( ( W e. Word V /\ L e. ZZ ) -> ( ( ( W cyclShift L ) = W /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. k e. NN0 ( W ` i ) = ( W ` ( ( i + ( k x. L ) ) mod ( # ` W ) ) ) ) ) | 
						
							| 23 | 18 21 22 | sylc |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> A. k e. NN0 ( W ` i ) = ( W ` ( ( i + ( k x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 24 |  | elfzonn0 |  |-  ( j e. ( 0 ..^ ( # ` W ) ) -> j e. NN0 ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> j e. NN0 ) | 
						
							| 26 | 14 23 25 | rspcdva |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` i ) = ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 -> ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) = ( W ` 0 ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) -> ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) = ( W ` 0 ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( ( i + ( j x. L ) ) mod ( # ` W ) ) ) = ( W ` 0 ) ) | 
						
							| 30 | 26 29 | eqtrd |  |-  ( ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) /\ ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( j e. ( 0 ..^ ( # ` W ) ) /\ ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 ) -> ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 32 | 31 | rexlimiva |  |-  ( E. j e. ( 0 ..^ ( # ` W ) ) ( ( i + ( j x. L ) ) mod ( # ` W ) ) = 0 -> ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 33 | 10 32 | mpcom |  |-  ( ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 34 | 33 | ralrimiva |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) | 
						
							| 35 |  | repswsymballbi |  |-  ( W e. Word V -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> ( W = ( ( W ` 0 ) repeatS ( # ` W ) ) <-> A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( W ` 0 ) ) ) | 
						
							| 37 | 34 36 | mpbird |  |-  ( ( ( W e. Word V /\ ( # ` W ) e. Prime ) /\ ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( W e. Word V /\ ( # ` W ) e. Prime ) -> ( ( L e. ZZ /\ ( L mod ( # ` W ) ) =/= 0 /\ ( W cyclShift L ) = W ) -> W = ( ( W ` 0 ) repeatS ( # ` W ) ) ) ) |