Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dalawlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dalawlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dalawlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalawlem2.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
7 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ) |
8 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
9 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
10 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
11 |
1 2 4 5
|
islpln2a |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
12 |
6 8 9 10 11
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
13 |
|
df-ne |
⊢ ( 𝑄 ≠ 𝑅 ↔ ¬ 𝑄 = 𝑅 ) |
14 |
13
|
anbi1i |
⊢ ( ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ↔ ( ¬ 𝑄 = 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
15 |
|
pm4.56 |
⊢ ( ( ¬ 𝑄 = 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ↔ ¬ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ↔ ¬ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
17 |
12 16
|
bitr2di |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ↔ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ) ) |
18 |
2 4
|
hlatjrot |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
19 |
6 8 9 10 18
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
20 |
19
|
eleq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∈ 𝑂 ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ) ) |
21 |
17 20
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ) ) |
22 |
21
|
con1bid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ↔ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |
23 |
7 22
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
24 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) |
25 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) |
26 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) |
27 |
1 2 3 4
|
dalawlem12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
28 |
27
|
3expib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
29 |
28
|
3exp |
⊢ ( 𝐾 ∈ HL → ( 𝑄 = 𝑅 → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) ) ) |
30 |
1 2 3 4
|
dalawlem11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
31 |
30
|
3expib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
32 |
31
|
3exp |
⊢ ( 𝐾 ∈ HL → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) ) ) |
33 |
29 32
|
jaod |
⊢ ( 𝐾 ∈ HL → ( ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) ) ) |
34 |
33
|
3imp |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) → ( ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
35 |
34
|
3impib |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑄 = 𝑅 ∨ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
36 |
6 23 24 25 26 35
|
syl311anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ¬ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ∈ 𝑂 ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |