| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
| 2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
| 6 |
|
dalem54.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 7 |
|
dalem54.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
| 8 |
|
dalem54.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
| 9 |
|
dalem54.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
| 10 |
|
dalem54.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
| 11 |
|
dalem54.h |
⊢ 𝐻 = ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) |
| 12 |
|
dalem54.i |
⊢ 𝐼 = ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) |
| 13 |
|
dalem54.b1 |
⊢ 𝐵 = ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∧ 𝑌 ) |
| 14 |
1 2 3 4
|
dalemswapyz |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
| 16 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 = 𝑍 ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑍 = 𝑌 ) |
| 18 |
1 2 3 4 5
|
dalemswapyzps |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑑 ≤ 𝑍 ∧ ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) ) |
| 19 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
| 20 |
|
biid |
⊢ ( ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑑 ≤ 𝑍 ∧ ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) ↔ ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑑 ≤ 𝑍 ∧ ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) ) |
| 21 |
|
eqid |
⊢ ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) = ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) |
| 22 |
|
eqid |
⊢ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) = ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) |
| 23 |
|
eqid |
⊢ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) = ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) |
| 24 |
|
eqid |
⊢ ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) = ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) |
| 25 |
19 2 3 4 20 6 7 9 8 21 22 23 24
|
dalem55 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ∧ 𝑍 = 𝑌 ∧ ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑑 ≤ 𝑍 ∧ ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) ) → ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) ) ) |
| 26 |
15 17 18 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) ) ) |
| 27 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
| 29 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
| 31 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
| 32 |
31
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
| 33 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑃 ∈ 𝐴 ) |
| 35 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 36 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
30 32 34 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
| 39 |
38
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ∈ 𝐴 ) |
| 40 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ∈ 𝐴 ) |
| 42 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
30 39 41 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
35 6
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) = ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ) |
| 45 |
28 37 43 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) = ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ) |
| 46 |
10 45
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 = ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ) |
| 47 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑄 ∈ 𝐴 ) |
| 49 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
30 32 48 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑇 ∈ 𝐴 ) |
| 53 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑑 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 54 |
30 39 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 55 |
35 6
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑑 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) = ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) |
| 56 |
28 50 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) = ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) |
| 57 |
11 56
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 = ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) |
| 58 |
46 57
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) = ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ) |
| 59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( 𝑆 ∨ 𝑇 ) ) ) |
| 60 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 61 |
60
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑅 ∈ 𝐴 ) |
| 62 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 63 |
30 32 61 62
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 64 |
1
|
dalemuea |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
| 65 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑈 ∈ 𝐴 ) |
| 66 |
35 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑑 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 67 |
30 39 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 68 |
35 6
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑑 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) = ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) |
| 69 |
28 63 67 68
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) = ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) |
| 70 |
12 69
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 = ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) |
| 71 |
58 70
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) = ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ) |
| 72 |
71 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∧ 𝑌 ) = ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) ) |
| 73 |
13 72
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐵 = ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) ) |
| 74 |
58 73
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) = ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∧ ( ( ( ( ( 𝑑 ∨ 𝑆 ) ∧ ( 𝑐 ∨ 𝑃 ) ) ∨ ( ( 𝑑 ∨ 𝑇 ) ∧ ( 𝑐 ∨ 𝑄 ) ) ) ∨ ( ( 𝑑 ∨ 𝑈 ) ∧ ( 𝑐 ∨ 𝑅 ) ) ) ∧ 𝑍 ) ) ) |
| 75 |
26 59 74
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ) |