Metamath Proof Explorer


Theorem dalem56

Description: Lemma for dath . Analogue of dalem55 for line S T . (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem54.m ˙=meetK
dalem54.o O=LPlanesK
dalem54.y Y=P˙Q˙R
dalem54.z Z=S˙T˙U
dalem54.g G=c˙P˙d˙S
dalem54.h H=c˙Q˙d˙T
dalem54.i I=c˙R˙d˙U
dalem54.b1 B=G˙H˙I˙Y
Assertion dalem56 φY=ZψG˙H˙S˙T=G˙H˙B

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem54.m ˙=meetK
7 dalem54.o O=LPlanesK
8 dalem54.y Y=P˙Q˙R
9 dalem54.z Z=S˙T˙U
10 dalem54.g G=c˙P˙d˙S
11 dalem54.h H=c˙Q˙d˙T
12 dalem54.i I=c˙R˙d˙U
13 dalem54.b1 B=G˙H˙I˙Y
14 1 2 3 4 dalemswapyz φKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
15 14 3ad2ant1 φY=ZψKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
16 simp2 φY=ZψY=Z
17 16 eqcomd φY=ZψZ=Y
18 1 2 3 4 5 dalemswapyzps φY=ZψdAcA¬d˙Zcd¬c˙ZC˙d˙c
19 biid KHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙RKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
20 biid dAcA¬d˙Zcd¬c˙ZC˙d˙cdAcA¬d˙Zcd¬c˙ZC˙d˙c
21 eqid d˙S˙c˙P=d˙S˙c˙P
22 eqid d˙T˙c˙Q=d˙T˙c˙Q
23 eqid d˙U˙c˙R=d˙U˙c˙R
24 eqid d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z=d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
25 19 2 3 4 20 6 7 9 8 21 22 23 24 dalem55 KHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙RZ=YdAcA¬d˙Zcd¬c˙ZC˙d˙cd˙S˙c˙P˙d˙T˙c˙Q˙S˙T=d˙S˙c˙P˙d˙T˙c˙Q˙d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
26 15 17 18 25 syl3anc φY=Zψd˙S˙c˙P˙d˙T˙c˙Q˙S˙T=d˙S˙c˙P˙d˙T˙c˙Q˙d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
27 1 dalemkelat φKLat
28 27 3ad2ant1 φY=ZψKLat
29 1 dalemkehl φKHL
30 29 3ad2ant1 φY=ZψKHL
31 5 dalemccea ψcA
32 31 3ad2ant3 φY=ZψcA
33 1 dalempea φPA
34 33 3ad2ant1 φY=ZψPA
35 eqid BaseK=BaseK
36 35 3 4 hlatjcl KHLcAPAc˙PBaseK
37 30 32 34 36 syl3anc φY=Zψc˙PBaseK
38 5 dalemddea ψdA
39 38 3ad2ant3 φY=ZψdA
40 1 dalemsea φSA
41 40 3ad2ant1 φY=ZψSA
42 35 3 4 hlatjcl KHLdASAd˙SBaseK
43 30 39 41 42 syl3anc φY=Zψd˙SBaseK
44 35 6 latmcom KLatc˙PBaseKd˙SBaseKc˙P˙d˙S=d˙S˙c˙P
45 28 37 43 44 syl3anc φY=Zψc˙P˙d˙S=d˙S˙c˙P
46 10 45 eqtrid φY=ZψG=d˙S˙c˙P
47 1 dalemqea φQA
48 47 3ad2ant1 φY=ZψQA
49 35 3 4 hlatjcl KHLcAQAc˙QBaseK
50 30 32 48 49 syl3anc φY=Zψc˙QBaseK
51 1 dalemtea φTA
52 51 3ad2ant1 φY=ZψTA
53 35 3 4 hlatjcl KHLdATAd˙TBaseK
54 30 39 52 53 syl3anc φY=Zψd˙TBaseK
55 35 6 latmcom KLatc˙QBaseKd˙TBaseKc˙Q˙d˙T=d˙T˙c˙Q
56 28 50 54 55 syl3anc φY=Zψc˙Q˙d˙T=d˙T˙c˙Q
57 11 56 eqtrid φY=ZψH=d˙T˙c˙Q
58 46 57 oveq12d φY=ZψG˙H=d˙S˙c˙P˙d˙T˙c˙Q
59 58 oveq1d φY=ZψG˙H˙S˙T=d˙S˙c˙P˙d˙T˙c˙Q˙S˙T
60 1 dalemrea φRA
61 60 3ad2ant1 φY=ZψRA
62 35 3 4 hlatjcl KHLcARAc˙RBaseK
63 30 32 61 62 syl3anc φY=Zψc˙RBaseK
64 1 dalemuea φUA
65 64 3ad2ant1 φY=ZψUA
66 35 3 4 hlatjcl KHLdAUAd˙UBaseK
67 30 39 65 66 syl3anc φY=Zψd˙UBaseK
68 35 6 latmcom KLatc˙RBaseKd˙UBaseKc˙R˙d˙U=d˙U˙c˙R
69 28 63 67 68 syl3anc φY=Zψc˙R˙d˙U=d˙U˙c˙R
70 12 69 eqtrid φY=ZψI=d˙U˙c˙R
71 58 70 oveq12d φY=ZψG˙H˙I=d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R
72 71 16 oveq12d φY=ZψG˙H˙I˙Y=d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
73 13 72 eqtrid φY=ZψB=d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
74 58 73 oveq12d φY=ZψG˙H˙B=d˙S˙c˙P˙d˙T˙c˙Q˙d˙S˙c˙P˙d˙T˙c˙Q˙d˙U˙c˙R˙Z
75 26 59 74 3eqtr4d φY=ZψG˙H˙S˙T=G˙H˙B