Metamath Proof Explorer


Theorem dalem55

Description: Lemma for dath . Lines G H and P Q intersect at the auxiliary line B (later shown to be an axis of perspectivity; see dalem60 ). (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem54.m ˙=meetK
dalem54.o O=LPlanesK
dalem54.y Y=P˙Q˙R
dalem54.z Z=S˙T˙U
dalem54.g G=c˙P˙d˙S
dalem54.h H=c˙Q˙d˙T
dalem54.i I=c˙R˙d˙U
dalem54.b1 B=G˙H˙I˙Y
Assertion dalem55 φY=ZψG˙H˙P˙Q=G˙H˙B

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem54.m ˙=meetK
7 dalem54.o O=LPlanesK
8 dalem54.y Y=P˙Q˙R
9 dalem54.z Z=S˙T˙U
10 dalem54.g G=c˙P˙d˙S
11 dalem54.h H=c˙Q˙d˙T
12 dalem54.i I=c˙R˙d˙U
13 dalem54.b1 B=G˙H˙I˙Y
14 1 dalemkelat φKLat
15 14 3ad2ant1 φY=ZψKLat
16 1 dalemkehl φKHL
17 16 3ad2ant1 φY=ZψKHL
18 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
19 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
20 eqid BaseK=BaseK
21 20 3 4 hlatjcl KHLGAHAG˙HBaseK
22 17 18 19 21 syl3anc φY=ZψG˙HBaseK
23 1 3 4 dalempjqeb φP˙QBaseK
24 23 3ad2ant1 φY=ZψP˙QBaseK
25 20 2 6 latmle1 KLatG˙HBaseKP˙QBaseKG˙H˙P˙Q˙G˙H
26 15 22 24 25 syl3anc φY=ZψG˙H˙P˙Q˙G˙H
27 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
28 20 4 atbase IAIBaseK
29 27 28 syl φY=ZψIBaseK
30 20 2 3 latlej1 KLatG˙HBaseKIBaseKG˙H˙G˙H˙I
31 15 22 29 30 syl3anc φY=ZψG˙H˙G˙H˙I
32 1 4 dalemreb φRBaseK
33 20 2 3 latlej1 KLatP˙QBaseKRBaseKP˙Q˙P˙Q˙R
34 14 23 32 33 syl3anc φP˙Q˙P˙Q˙R
35 34 8 breqtrrdi φP˙Q˙Y
36 35 3ad2ant1 φY=ZψP˙Q˙Y
37 1 2 3 4 5 6 7 8 9 10 11 12 dalem42 φY=ZψG˙H˙IO
38 20 7 lplnbase G˙H˙IOG˙H˙IBaseK
39 37 38 syl φY=ZψG˙H˙IBaseK
40 1 7 dalemyeb φYBaseK
41 40 3ad2ant1 φY=ZψYBaseK
42 20 2 6 latmlem12 KLatG˙HBaseKG˙H˙IBaseKP˙QBaseKYBaseKG˙H˙G˙H˙IP˙Q˙YG˙H˙P˙Q˙G˙H˙I˙Y
43 15 22 39 24 41 42 syl122anc φY=ZψG˙H˙G˙H˙IP˙Q˙YG˙H˙P˙Q˙G˙H˙I˙Y
44 31 36 43 mp2and φY=ZψG˙H˙P˙Q˙G˙H˙I˙Y
45 44 13 breqtrrdi φY=ZψG˙H˙P˙Q˙B
46 20 6 latmcl KLatG˙HBaseKP˙QBaseKG˙H˙P˙QBaseK
47 15 22 24 46 syl3anc φY=ZψG˙H˙P˙QBaseK
48 eqid LLinesK=LLinesK
49 1 2 3 4 5 6 48 7 8 9 10 11 12 13 dalem53 φY=ZψBLLinesK
50 20 48 llnbase BLLinesKBBaseK
51 49 50 syl φY=ZψBBaseK
52 20 2 6 latlem12 KLatG˙H˙P˙QBaseKG˙HBaseKBBaseKG˙H˙P˙Q˙G˙HG˙H˙P˙Q˙BG˙H˙P˙Q˙G˙H˙B
53 15 47 22 51 52 syl13anc φY=ZψG˙H˙P˙Q˙G˙HG˙H˙P˙Q˙BG˙H˙P˙Q˙G˙H˙B
54 26 45 53 mpbi2and φY=ZψG˙H˙P˙Q˙G˙H˙B
55 hlatl KHLKAtLat
56 17 55 syl φY=ZψKAtLat
57 1 2 3 4 5 6 7 8 9 10 11 12 dalem52 φY=ZψG˙H˙P˙QA
58 1 2 3 4 5 6 7 8 9 10 11 12 13 dalem54 φY=ZψG˙H˙BA
59 2 4 atcmp KAtLatG˙H˙P˙QAG˙H˙BAG˙H˙P˙Q˙G˙H˙BG˙H˙P˙Q=G˙H˙B
60 56 57 58 59 syl3anc φY=ZψG˙H˙P˙Q˙G˙H˙BG˙H˙P˙Q=G˙H˙B
61 54 60 mpbid φY=ZψG˙H˙P˙Q=G˙H˙B