Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem54.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem54.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem54.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem54.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem54.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
|
dalem54.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
12 |
|
dalem54.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
13 |
|
dalem54.b1 |
|- B = ( ( ( G .\/ H ) .\/ I ) ./\ Y ) |
14 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
16 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
17 |
16
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
19 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. A ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ G e. A /\ H e. A ) -> ( G .\/ H ) e. ( Base ` K ) ) |
22 |
17 18 19 21
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) ) |
23 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
25 |
20 2 6
|
latmle1 |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) ) |
26 |
15 22 24 25
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) ) |
27 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. A ) |
28 |
20 4
|
atbase |
|- ( I e. A -> I e. ( Base ` K ) ) |
29 |
27 28
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) ) |
30 |
20 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) -> ( G .\/ H ) .<_ ( ( G .\/ H ) .\/ I ) ) |
31 |
15 22 29 30
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) .<_ ( ( G .\/ H ) .\/ I ) ) |
32 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
33 |
20 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
34 |
14 23 32 33
|
syl3anc |
|- ( ph -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
35 |
34 8
|
breqtrrdi |
|- ( ph -> ( P .\/ Q ) .<_ Y ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) .<_ Y ) |
37 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem42 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. O ) |
38 |
20 7
|
lplnbase |
|- ( ( ( G .\/ H ) .\/ I ) e. O -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
39 |
37 38
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
40 |
1 7
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
41 |
40
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. ( Base ` K ) ) |
42 |
20 2 6
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( G .\/ H ) e. ( Base ` K ) /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( ( G .\/ H ) .<_ ( ( G .\/ H ) .\/ I ) /\ ( P .\/ Q ) .<_ Y ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( ( G .\/ H ) .\/ I ) ./\ Y ) ) ) |
43 |
15 22 39 24 41 42
|
syl122anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .<_ ( ( G .\/ H ) .\/ I ) /\ ( P .\/ Q ) .<_ Y ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( ( G .\/ H ) .\/ I ) ./\ Y ) ) ) |
44 |
31 36 43
|
mp2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( ( G .\/ H ) .\/ I ) ./\ Y ) ) |
45 |
44 13
|
breqtrrdi |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) |
46 |
20 6
|
latmcl |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) ) |
47 |
15 22 24 46
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) ) |
48 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
49 |
1 2 3 4 5 6 48 7 8 9 10 11 12 13
|
dalem53 |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( LLines ` K ) ) |
50 |
20 48
|
llnbase |
|- ( B e. ( LLines ` K ) -> B e. ( Base ` K ) ) |
51 |
49 50
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( Base ` K ) ) |
52 |
20 2 6
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) /\ B e. ( Base ` K ) ) ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) ) |
53 |
15 47 22 51 52
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) ) |
54 |
26 45 53
|
mpbi2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) |
55 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
56 |
17 55
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. AtLat ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem52 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dalem54 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) e. A ) |
59 |
2 4
|
atcmp |
|- ( ( K e. AtLat /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A /\ ( ( G .\/ H ) ./\ B ) e. A ) -> ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ B ) ) ) |
60 |
56 57 58 59
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ B ) ) ) |
61 |
54 60
|
mpbid |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ B ) ) |