Metamath Proof Explorer


Theorem dalem55

Description: Lemma for dath . Lines G H and P Q intersect at the auxiliary line B (later shown to be an axis of perspectivity; see dalem60 ). (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem54.m = ( meet ‘ 𝐾 )
dalem54.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem54.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem54.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem54.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem54.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem54.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
dalem54.b1 𝐵 = ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 )
Assertion dalem55 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem54.m = ( meet ‘ 𝐾 )
7 dalem54.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem54.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem54.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem54.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 dalem54.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
12 dalem54.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
13 dalem54.b1 𝐵 = ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 )
14 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
15 14 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
16 1 dalemkehl ( 𝜑𝐾 ∈ HL )
17 16 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
18 1 2 3 4 5 6 7 8 9 10 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
19 1 2 3 4 5 6 7 8 9 11 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
22 17 18 19 21 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
23 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
24 23 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
25 20 2 6 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝐺 𝐻 ) )
26 15 22 24 25 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝐺 𝐻 ) )
27 1 2 3 4 5 6 7 8 9 12 dalem34 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼𝐴 )
28 20 4 atbase ( 𝐼𝐴𝐼 ∈ ( Base ‘ 𝐾 ) )
29 27 28 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) )
30 20 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 𝐻 ) ( ( 𝐺 𝐻 ) 𝐼 ) )
31 15 22 29 30 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ( ( 𝐺 𝐻 ) 𝐼 ) )
32 1 4 dalemreb ( 𝜑𝑅 ∈ ( Base ‘ 𝐾 ) )
33 20 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑄 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
34 14 23 32 33 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ( ( 𝑃 𝑄 ) 𝑅 ) )
35 34 8 breqtrrdi ( 𝜑 → ( 𝑃 𝑄 ) 𝑌 )
36 35 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) 𝑌 )
37 1 2 3 4 5 6 7 8 9 10 11 12 dalem42 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ 𝑂 )
38 20 7 lplnbase ( ( ( 𝐺 𝐻 ) 𝐼 ) ∈ 𝑂 → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
39 37 38 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
40 1 7 dalemyeb ( 𝜑𝑌 ∈ ( Base ‘ 𝐾 ) )
41 40 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) )
42 20 2 6 latmlem12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝐺 𝐻 ) ( ( 𝐺 𝐻 ) 𝐼 ) ∧ ( 𝑃 𝑄 ) 𝑌 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 ) ) )
43 15 22 39 24 41 42 syl122anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) ( ( 𝐺 𝐻 ) 𝐼 ) ∧ ( 𝑃 𝑄 ) 𝑌 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 ) ) )
44 31 36 43 mp2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 ) )
45 44 13 breqtrrdi ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) 𝐵 )
46 20 6 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
47 15 22 24 46 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) )
48 eqid ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 )
49 1 2 3 4 5 6 48 7 8 9 10 11 12 13 dalem53 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐵 ∈ ( LLines ‘ 𝐾 ) )
50 20 48 llnbase ( 𝐵 ∈ ( LLines ‘ 𝐾 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) )
51 49 50 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) )
52 20 2 6 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝐺 𝐻 ) ∧ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) 𝐵 ) ↔ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( 𝐺 𝐻 ) 𝐵 ) ) )
53 15 47 22 51 52 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝐺 𝐻 ) ∧ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) 𝐵 ) ↔ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( 𝐺 𝐻 ) 𝐵 ) ) )
54 26 45 53 mpbi2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( 𝐺 𝐻 ) 𝐵 ) )
55 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
56 17 55 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ AtLat )
57 1 2 3 4 5 6 7 8 9 10 11 12 dalem52 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ∈ 𝐴 )
58 1 2 3 4 5 6 7 8 9 10 11 12 13 dalem54 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ∈ 𝐴 )
59 2 4 atcmp ( ( 𝐾 ∈ AtLat ∧ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ∈ 𝐴 ∧ ( ( 𝐺 𝐻 ) 𝐵 ) ∈ 𝐴 ) → ( ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( 𝐺 𝐻 ) 𝐵 ) ↔ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) ) )
60 56 57 58 59 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( ( 𝐺 𝐻 ) 𝐵 ) ↔ ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) ) )
61 54 60 mpbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) )