Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
|
dalem54.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
7 |
|
dalem54.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
8 |
|
dalem54.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
9 |
|
dalem54.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
10 |
|
dalem54.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
11 |
|
dalem54.h |
⊢ 𝐻 = ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) |
12 |
|
dalem54.i |
⊢ 𝐼 = ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) |
13 |
|
dalem54.b1 |
⊢ 𝐵 = ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∧ 𝑌 ) |
14 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
16 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ 𝐴 ) |
17 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ 𝐴 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem41 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ≠ 𝐻 ) |
19 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
20 |
3 4 19
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) ∧ 𝐺 ≠ 𝐻 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( LLines ‘ 𝐾 ) ) |
21 |
15 16 17 18 20
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( LLines ‘ 𝐾 ) ) |
22 |
1 2 3 4 5 6 19 7 8 9 10 11 12 13
|
dalem53 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐵 ∈ ( LLines ‘ 𝐾 ) ) |
23 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
25 19
|
llnbase |
⊢ ( ( 𝐺 ∨ 𝐻 ) ∈ ( LLines ‘ 𝐾 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
21 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ 𝐴 ) |
29 |
25 4
|
atbase |
⊢ ( 𝐼 ∈ 𝐴 → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
31 |
25 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
24 27 30 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
1 7
|
dalemyeb |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
35 |
25 2 6
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∧ 𝑌 ) ≤ 𝑌 ) |
36 |
24 32 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∧ 𝑌 ) ≤ 𝑌 ) |
37 |
13 36
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐵 ≤ 𝑌 ) |
38 |
1 2 3 4 5 6 7 8 9 10
|
dalem24 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝐺 ≤ 𝑌 ) |
39 |
25 4
|
atbase |
⊢ ( 𝐺 ∈ 𝐴 → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
40 |
16 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
41 |
25 4
|
atbase |
⊢ ( 𝐻 ∈ 𝐴 → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
42 |
17 41
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
43 |
25 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌 ) ↔ ( 𝐺 ∨ 𝐻 ) ≤ 𝑌 ) ) |
44 |
24 40 42 34 43
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌 ) ↔ ( 𝐺 ∨ 𝐻 ) ≤ 𝑌 ) ) |
45 |
|
simpl |
⊢ ( ( 𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌 ) → 𝐺 ≤ 𝑌 ) |
46 |
44 45
|
syl6bir |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ≤ 𝑌 → 𝐺 ≤ 𝑌 ) ) |
47 |
38 46
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ ( 𝐺 ∨ 𝐻 ) ≤ 𝑌 ) |
48 |
|
nbrne2 |
⊢ ( ( 𝐵 ≤ 𝑌 ∧ ¬ ( 𝐺 ∨ 𝐻 ) ≤ 𝑌 ) → 𝐵 ≠ ( 𝐺 ∨ 𝐻 ) ) |
49 |
37 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐵 ≠ ( 𝐺 ∨ 𝐻 ) ) |
50 |
49
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) ≠ 𝐵 ) |
51 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
52 |
15 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ AtLat ) |
53 |
25 19
|
llnbase |
⊢ ( 𝐵 ∈ ( LLines ‘ 𝐾 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) ) |
54 |
22 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) ) |
55 |
25 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
24 27 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem52 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
58 |
1 3 4
|
dalempjqeb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
58
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
60 |
25 2 6
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝐺 ∨ 𝐻 ) ) |
61 |
24 27 59 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝐺 ∨ 𝐻 ) ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem51 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ≠ 𝑌 ) ) |
63 |
62
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) ) |
64 |
25 4
|
atbase |
⊢ ( 𝑐 ∈ 𝐴 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
65 |
64
|
anim2i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ) |
66 |
65
|
3anim1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ) |
67 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) ) |
68 |
|
eqid |
⊢ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) |
69 |
|
eqid |
⊢ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) |
70 |
67 2 3 4 6 7 68 8 13 69
|
dalem10 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ 𝐵 ) |
71 |
66 70
|
syl3an1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ) ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝑐 ≤ ( 𝐺 ∨ 𝐻 ) ∧ ¬ 𝑐 ≤ ( 𝐻 ∨ 𝐼 ) ∧ ¬ 𝑐 ≤ ( 𝐼 ∨ 𝐺 ) ) ∧ ( ¬ 𝑐 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑐 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝑐 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑐 ≤ ( 𝐺 ∨ 𝑃 ) ∧ 𝑐 ≤ ( 𝐻 ∨ 𝑄 ) ∧ 𝑐 ≤ ( 𝐼 ∨ 𝑅 ) ) ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ 𝐵 ) |
72 |
63 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ 𝐵 ) |
73 |
25 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
74 |
24 27 59 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ) |
75 |
25 2 6
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝐺 ∨ 𝐻 ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ 𝐵 ) ↔ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ) ) |
76 |
24 74 27 54 75
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝐺 ∨ 𝐻 ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ 𝐵 ) ↔ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ) ) |
77 |
61 72 76
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ) |
78 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
79 |
25 2 78 4
|
atlen0 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≤ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ≠ ( 0. ‘ 𝐾 ) ) |
80 |
52 56 57 77 79
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ≠ ( 0. ‘ 𝐾 ) ) |
81 |
6 78 4 19
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( LLines ‘ 𝐾 ) ∧ 𝐵 ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝐺 ∨ 𝐻 ) ≠ 𝐵 ∧ ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ∈ 𝐴 ) |
82 |
15 21 22 50 80 81
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∧ 𝐵 ) ∈ 𝐴 ) |