| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
| 6 |
|
dalem54.m |
|- ./\ = ( meet ` K ) |
| 7 |
|
dalem54.o |
|- O = ( LPlanes ` K ) |
| 8 |
|
dalem54.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 9 |
|
dalem54.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 10 |
|
dalem54.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
| 11 |
|
dalem54.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
| 12 |
|
dalem54.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
| 13 |
|
dalem54.b1 |
|- B = ( ( ( G .\/ H ) .\/ I ) ./\ Y ) |
| 14 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
| 16 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
| 17 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. A ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem41 |
|- ( ( ph /\ Y = Z /\ ps ) -> G =/= H ) |
| 19 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
| 20 |
3 4 19
|
llni2 |
|- ( ( ( K e. HL /\ G e. A /\ H e. A ) /\ G =/= H ) -> ( G .\/ H ) e. ( LLines ` K ) ) |
| 21 |
15 16 17 18 20
|
syl31anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( LLines ` K ) ) |
| 22 |
1 2 3 4 5 6 19 7 8 9 10 11 12 13
|
dalem53 |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( LLines ` K ) ) |
| 23 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
| 25 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 26 |
25 19
|
llnbase |
|- ( ( G .\/ H ) e. ( LLines ` K ) -> ( G .\/ H ) e. ( Base ` K ) ) |
| 27 |
21 26
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. A ) |
| 29 |
25 4
|
atbase |
|- ( I e. A -> I e. ( Base ` K ) ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) ) |
| 31 |
25 3
|
latjcl |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
| 32 |
24 27 30 31
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
| 33 |
1 7
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. ( Base ` K ) ) |
| 35 |
25 2 6
|
latmle2 |
|- ( ( K e. Lat /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( ( ( G .\/ H ) .\/ I ) ./\ Y ) .<_ Y ) |
| 36 |
24 32 34 35
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .\/ I ) ./\ Y ) .<_ Y ) |
| 37 |
13 36
|
eqbrtrid |
|- ( ( ph /\ Y = Z /\ ps ) -> B .<_ Y ) |
| 38 |
1 2 3 4 5 6 7 8 9 10
|
dalem24 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. G .<_ Y ) |
| 39 |
25 4
|
atbase |
|- ( G e. A -> G e. ( Base ` K ) ) |
| 40 |
16 39
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. ( Base ` K ) ) |
| 41 |
25 4
|
atbase |
|- ( H e. A -> H e. ( Base ` K ) ) |
| 42 |
17 41
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. ( Base ` K ) ) |
| 43 |
25 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( G e. ( Base ` K ) /\ H e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( G .<_ Y /\ H .<_ Y ) <-> ( G .\/ H ) .<_ Y ) ) |
| 44 |
24 40 42 34 43
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .<_ Y /\ H .<_ Y ) <-> ( G .\/ H ) .<_ Y ) ) |
| 45 |
|
simpl |
|- ( ( G .<_ Y /\ H .<_ Y ) -> G .<_ Y ) |
| 46 |
44 45
|
biimtrrdi |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .<_ Y -> G .<_ Y ) ) |
| 47 |
38 46
|
mtod |
|- ( ( ph /\ Y = Z /\ ps ) -> -. ( G .\/ H ) .<_ Y ) |
| 48 |
|
nbrne2 |
|- ( ( B .<_ Y /\ -. ( G .\/ H ) .<_ Y ) -> B =/= ( G .\/ H ) ) |
| 49 |
37 47 48
|
syl2anc |
|- ( ( ph /\ Y = Z /\ ps ) -> B =/= ( G .\/ H ) ) |
| 50 |
49
|
necomd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) =/= B ) |
| 51 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 52 |
15 51
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. AtLat ) |
| 53 |
25 19
|
llnbase |
|- ( B e. ( LLines ` K ) -> B e. ( Base ` K ) ) |
| 54 |
22 53
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( Base ` K ) ) |
| 55 |
25 6
|
latmcl |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ B e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) ) |
| 56 |
24 27 54 55
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) ) |
| 57 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem52 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) |
| 58 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 59 |
58
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 60 |
25 2 6
|
latmle1 |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) ) |
| 61 |
24 27 59 60
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem51 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) /\ ( ( G .\/ H ) .\/ I ) =/= Y ) ) |
| 63 |
62
|
simpld |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) ) |
| 64 |
25 4
|
atbase |
|- ( c e. A -> c e. ( Base ` K ) ) |
| 65 |
64
|
anim2i |
|- ( ( K e. HL /\ c e. A ) -> ( K e. HL /\ c e. ( Base ` K ) ) ) |
| 66 |
65
|
3anim1i |
|- ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) ) |
| 67 |
|
biid |
|- ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) ) |
| 68 |
|
eqid |
|- ( ( G .\/ H ) .\/ I ) = ( ( G .\/ H ) .\/ I ) |
| 69 |
|
eqid |
|- ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ ( P .\/ Q ) ) |
| 70 |
67 2 3 4 6 7 68 8 13 69
|
dalem10 |
|- ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) |
| 71 |
66 70
|
syl3an1 |
|- ( ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) |
| 72 |
63 71
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) |
| 73 |
25 6
|
latmcl |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 74 |
24 27 59 73
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) ) |
| 75 |
25 2 6
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) /\ B e. ( Base ` K ) ) ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) ) |
| 76 |
24 74 27 54 75
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) ) |
| 77 |
61 72 76
|
mpbi2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) |
| 78 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 79 |
25 2 78 4
|
atlen0 |
|- ( ( ( K e. AtLat /\ ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) -> ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) ) |
| 80 |
52 56 57 77 79
|
syl31anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) ) |
| 81 |
6 78 4 19
|
2llnmat |
|- ( ( ( K e. HL /\ ( G .\/ H ) e. ( LLines ` K ) /\ B e. ( LLines ` K ) ) /\ ( ( G .\/ H ) =/= B /\ ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) ) ) -> ( ( G .\/ H ) ./\ B ) e. A ) |
| 82 |
15 21 22 50 80 81
|
syl32anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) e. A ) |