| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfznn |
⊢ ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) → 𝐷 ∈ ℕ ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℕ ) |
| 3 |
2
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ ) |
| 5 |
4
|
rpregt0d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) ) |
| 7 |
6
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 8 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ∈ ℝ+ ) |
| 9 |
8
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 0 ≤ 𝑋 ) |
| 10 |
4
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ ) |
| 11 |
|
fznnfl |
⊢ ( 𝑋 ∈ ℝ → ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ℕ ∧ 𝐷 ≤ 𝑋 ) ) ) |
| 13 |
12
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ≤ 𝑋 ) |
| 14 |
3 7 7 9 13
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 · 𝐷 ) ≤ ( 𝑋 · 𝑋 ) ) |
| 15 |
|
rpcn |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℂ ) |
| 17 |
16
|
sqvald |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
| 19 |
14 18
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 · 𝐷 ) ≤ ( 𝑋 ↑ 2 ) ) |
| 20 |
|
2z |
⊢ 2 ∈ ℤ |
| 21 |
|
rpexpcl |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑋 ↑ 2 ) ∈ ℝ+ ) |
| 22 |
4 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) ∈ ℝ+ ) |
| 23 |
22
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
| 25 |
2
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℝ+ ) |
| 26 |
7 24 25
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( 𝑋 · 𝐷 ) ≤ ( 𝑋 ↑ 2 ) ↔ 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ) |
| 27 |
19 26
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) |
| 28 |
|
nndivre |
⊢ ( ( ( 𝑋 ↑ 2 ) ∈ ℝ ∧ 𝐷 ∈ ℕ ) → ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ ) |
| 29 |
23 1 28
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ ) |
| 30 |
|
flword2 |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ ∧ 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) → ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) |
| 31 |
7 29 27 30
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) |
| 32 |
27 31
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∧ ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑋 ) ) ) ) |