| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) |
| 2 |
1
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ0 ) |
| 3 |
2
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ0 ) |
| 4 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
| 6 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
| 7 |
4 5 6
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) : ℤ –onto→ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
| 8 |
|
fofn |
⊢ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) : ℤ –onto→ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) Fn ℤ ) |
| 9 |
3 7 8
|
3syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) Fn ℤ ) |
| 10 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 12 |
|
fniniseg |
⊢ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) Fn ℤ → ( 𝑝 ∈ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ↔ ( 𝑝 ∈ ℤ ∧ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) ) |
| 13 |
12
|
baibd |
⊢ ( ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) Fn ℤ ∧ 𝑝 ∈ ℤ ) → ( 𝑝 ∈ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ↔ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) |
| 14 |
9 11 13
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∈ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ↔ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ) ) |
| 15 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 17 |
4 6
|
zndvds |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ↔ 𝑁 ∥ ( 𝑝 − 𝐴 ) ) ) |
| 18 |
3 11 16 17
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ↔ 𝑁 ∥ ( 𝑝 − 𝐴 ) ) ) |
| 19 |
14 18
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∈ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ↔ 𝑁 ∥ ( 𝑝 − 𝐴 ) ) ) |
| 20 |
19
|
rabbi2dva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ℙ ∩ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ) = { 𝑝 ∈ ℙ ∣ 𝑁 ∥ ( 𝑝 − 𝐴 ) } ) |
| 21 |
|
eqid |
⊢ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
| 22 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 gcd 𝑁 ) = 1 ) |
| 23 |
4 21 6
|
znunit |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 24 |
2 15 23
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 25 |
22 24
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
| 26 |
|
eqid |
⊢ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) = ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) |
| 27 |
4 6 1 21 25 26
|
dirith2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ℙ ∩ ( ◡ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) “ { ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ‘ 𝐴 ) } ) ) ≈ ℕ ) |
| 28 |
20 27
|
eqbrtrrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑁 ∥ ( 𝑝 − 𝐴 ) } ≈ ℕ ) |