| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divsqrtsum.2 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / ( √ ‘ 𝑛 ) ) − ( 2 · ( √ ‘ 𝑥 ) ) ) ) |
| 2 |
|
divsqrsum2.1 |
⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐿 ) |
| 3 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 5 |
1
|
divsqrsumf |
⊢ 𝐹 : ℝ+ ⟶ ℝ |
| 6 |
5
|
ffvelcdmi |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 7 |
|
rpsup |
⊢ sup ( ℝ+ , ℝ* , < ) = +∞ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → sup ( ℝ+ , ℝ* , < ) = +∞ ) |
| 9 |
5
|
a1i |
⊢ ( 𝜑 → 𝐹 : ℝ+ ⟶ ℝ ) |
| 10 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
10 2
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑦 ) ) ⇝𝑟 𝐿 ) |
| 12 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 13 |
8 11 12
|
rlimrecl |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 14 |
|
resubcl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ∈ ℝ ) |
| 15 |
6 13 14
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ∈ ℂ ) |
| 17 |
|
rpsqrtcl |
⊢ ( 𝑦 ∈ ℝ+ → ( √ ‘ 𝑦 ) ∈ ℝ+ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( √ ‘ 𝑦 ) ∈ ℝ+ ) |
| 19 |
18
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( √ ‘ 𝑦 ) ∈ ℂ ) |
| 20 |
16 19
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ∈ ℂ ) |
| 21 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 22 |
16 19
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( abs ‘ ( √ ‘ 𝑦 ) ) ) ) |
| 23 |
18
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( √ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑦 ) ) ) |
| 24 |
|
absid |
⊢ ( ( ( √ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑦 ) ) → ( abs ‘ ( √ ‘ 𝑦 ) ) = ( √ ‘ 𝑦 ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( √ ‘ 𝑦 ) ) = ( √ ‘ 𝑦 ) ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( abs ‘ ( √ ‘ 𝑦 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( √ ‘ 𝑦 ) ) ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ) = ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( √ ‘ 𝑦 ) ) ) |
| 28 |
1 2
|
divsqrtsum2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝑦 ) ) ) |
| 29 |
16
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) ∈ ℝ ) |
| 30 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 31 |
29 30 18
|
lemuldivd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( √ ‘ 𝑦 ) ) ≤ 1 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝑦 ) ) ) ) |
| 32 |
28 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) ) · ( √ ‘ 𝑦 ) ) ≤ 1 ) |
| 33 |
27 32
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ) ≤ 1 ) |
| 34 |
33
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 1 ≤ 𝑦 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ) ≤ 1 ) |
| 35 |
4 20 21 21 34
|
elo1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ+ ↦ ( ( ( 𝐹 ‘ 𝑦 ) − 𝐿 ) · ( √ ‘ 𝑦 ) ) ) ∈ 𝑂(1) ) |