| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divsqrtsum.2 |
|- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqrt ` n ) ) - ( 2 x. ( sqrt ` x ) ) ) ) |
| 2 |
|
divsqrsum2.1 |
|- ( ph -> F ~~>r L ) |
| 3 |
|
rpssre |
|- RR+ C_ RR |
| 4 |
3
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 5 |
1
|
divsqrsumf |
|- F : RR+ --> RR |
| 6 |
5
|
ffvelcdmi |
|- ( y e. RR+ -> ( F ` y ) e. RR ) |
| 7 |
|
rpsup |
|- sup ( RR+ , RR* , < ) = +oo |
| 8 |
7
|
a1i |
|- ( ph -> sup ( RR+ , RR* , < ) = +oo ) |
| 9 |
5
|
a1i |
|- ( ph -> F : RR+ --> RR ) |
| 10 |
9
|
feqmptd |
|- ( ph -> F = ( y e. RR+ |-> ( F ` y ) ) ) |
| 11 |
10 2
|
eqbrtrrd |
|- ( ph -> ( y e. RR+ |-> ( F ` y ) ) ~~>r L ) |
| 12 |
6
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> ( F ` y ) e. RR ) |
| 13 |
8 11 12
|
rlimrecl |
|- ( ph -> L e. RR ) |
| 14 |
|
resubcl |
|- ( ( ( F ` y ) e. RR /\ L e. RR ) -> ( ( F ` y ) - L ) e. RR ) |
| 15 |
6 13 14
|
syl2anr |
|- ( ( ph /\ y e. RR+ ) -> ( ( F ` y ) - L ) e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> ( ( F ` y ) - L ) e. CC ) |
| 17 |
|
rpsqrtcl |
|- ( y e. RR+ -> ( sqrt ` y ) e. RR+ ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> ( sqrt ` y ) e. RR+ ) |
| 19 |
18
|
rpcnd |
|- ( ( ph /\ y e. RR+ ) -> ( sqrt ` y ) e. CC ) |
| 20 |
16 19
|
mulcld |
|- ( ( ph /\ y e. RR+ ) -> ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) e. CC ) |
| 21 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 22 |
16 19
|
absmuld |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) ) = ( ( abs ` ( ( F ` y ) - L ) ) x. ( abs ` ( sqrt ` y ) ) ) ) |
| 23 |
18
|
rprege0d |
|- ( ( ph /\ y e. RR+ ) -> ( ( sqrt ` y ) e. RR /\ 0 <_ ( sqrt ` y ) ) ) |
| 24 |
|
absid |
|- ( ( ( sqrt ` y ) e. RR /\ 0 <_ ( sqrt ` y ) ) -> ( abs ` ( sqrt ` y ) ) = ( sqrt ` y ) ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( sqrt ` y ) ) = ( sqrt ` y ) ) |
| 26 |
25
|
oveq2d |
|- ( ( ph /\ y e. RR+ ) -> ( ( abs ` ( ( F ` y ) - L ) ) x. ( abs ` ( sqrt ` y ) ) ) = ( ( abs ` ( ( F ` y ) - L ) ) x. ( sqrt ` y ) ) ) |
| 27 |
22 26
|
eqtrd |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) ) = ( ( abs ` ( ( F ` y ) - L ) ) x. ( sqrt ` y ) ) ) |
| 28 |
1 2
|
divsqrtsum2 |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( ( F ` y ) - L ) ) <_ ( 1 / ( sqrt ` y ) ) ) |
| 29 |
16
|
abscld |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( ( F ` y ) - L ) ) e. RR ) |
| 30 |
|
1red |
|- ( ( ph /\ y e. RR+ ) -> 1 e. RR ) |
| 31 |
29 30 18
|
lemuldivd |
|- ( ( ph /\ y e. RR+ ) -> ( ( ( abs ` ( ( F ` y ) - L ) ) x. ( sqrt ` y ) ) <_ 1 <-> ( abs ` ( ( F ` y ) - L ) ) <_ ( 1 / ( sqrt ` y ) ) ) ) |
| 32 |
28 31
|
mpbird |
|- ( ( ph /\ y e. RR+ ) -> ( ( abs ` ( ( F ` y ) - L ) ) x. ( sqrt ` y ) ) <_ 1 ) |
| 33 |
27 32
|
eqbrtrd |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) ) <_ 1 ) |
| 34 |
33
|
adantrr |
|- ( ( ph /\ ( y e. RR+ /\ 1 <_ y ) ) -> ( abs ` ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) ) <_ 1 ) |
| 35 |
4 20 21 21 34
|
elo1d |
|- ( ph -> ( y e. RR+ |-> ( ( ( F ` y ) - L ) x. ( sqrt ` y ) ) ) e. O(1) ) |