| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvntaylp0.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | dvntaylp0.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | dvntaylp0.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 4 |  | dvntaylp0.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 5 |  | dvntaylp0.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 6 |  | dvntaylp0.t | ⊢ 𝑇  =  ( 𝑁 ( 𝑆  Tayl  𝐹 ) 𝐵 ) | 
						
							| 7 |  | elfz3nn0 | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 10 |  | elfznn0 | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 13 | 9 12 | npcand | ⊢ ( 𝜑  →  ( ( 𝑁  −  𝑀 )  +  𝑀 )  =  𝑁 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  𝑀 )  +  𝑀 ) ( 𝑆  Tayl  𝐹 ) 𝐵 )  =  ( 𝑁 ( 𝑆  Tayl  𝐹 ) 𝐵 ) ) | 
						
							| 15 | 14 6 | eqtr4di | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  𝑀 )  +  𝑀 ) ( 𝑆  Tayl  𝐹 ) 𝐵 )  =  𝑇 ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝜑  →  ( ℂ  D𝑛  ( ( ( 𝑁  −  𝑀 )  +  𝑀 ) ( 𝑆  Tayl  𝐹 ) 𝐵 ) )  =  ( ℂ  D𝑛  𝑇 ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝜑  →  ( ( ℂ  D𝑛  ( ( ( 𝑁  −  𝑀 )  +  𝑀 ) ( 𝑆  Tayl  𝐹 ) 𝐵 ) ) ‘ 𝑀 )  =  ( ( ℂ  D𝑛  𝑇 ) ‘ 𝑀 ) ) | 
						
							| 18 |  | fznn0sub | ⊢ ( 𝑀  ∈  ( 0 ... 𝑁 )  →  ( 𝑁  −  𝑀 )  ∈  ℕ0 ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  𝑀 )  ∈  ℕ0 ) | 
						
							| 20 | 13 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 21 | 20 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( ( 𝑁  −  𝑀 )  +  𝑀 ) )  =  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 22 | 5 21 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( ( 𝑁  −  𝑀 )  +  𝑀 ) ) ) | 
						
							| 23 | 1 2 3 11 19 22 | dvntaylp | ⊢ ( 𝜑  →  ( ( ℂ  D𝑛  ( ( ( 𝑁  −  𝑀 )  +  𝑀 ) ( 𝑆  Tayl  𝐹 ) 𝐵 ) ) ‘ 𝑀 )  =  ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) | 
						
							| 24 | 17 23 | eqtr3d | ⊢ ( 𝜑  →  ( ( ℂ  D𝑛  𝑇 ) ‘ 𝑀 )  =  ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( 𝜑  →  ( ( ( ℂ  D𝑛  𝑇 ) ‘ 𝑀 ) ‘ 𝐵 )  =  ( ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 ) ) | 
						
							| 26 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 28 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  𝑆 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 29 | 27 1 2 3 28 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 30 |  | dvnf | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) | 
						
							| 31 | 1 29 11 30 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) | 
						
							| 32 |  | dvnbss | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑀  ∈  ℕ0 )  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 )  ⊆  dom  𝐹 ) | 
						
							| 33 | 1 29 11 32 | syl3anc | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 )  ⊆  dom  𝐹 ) | 
						
							| 34 | 2 33 | fssdmd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 )  ⊆  𝐴 ) | 
						
							| 35 | 34 3 | sstrd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 )  ⊆  𝑆 ) | 
						
							| 36 | 19 | orcd | ⊢ ( 𝜑  →  ( ( 𝑁  −  𝑀 )  ∈  ℕ0  ∨  ( 𝑁  −  𝑀 )  =  +∞ ) ) | 
						
							| 37 |  | dvnadd | ⊢ ( ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) )  ∧  ( 𝑀  ∈  ℕ0  ∧  ( 𝑁  −  𝑀 )  ∈  ℕ0 ) )  →  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁  −  𝑀 ) )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( 𝑀  +  ( 𝑁  −  𝑀 ) ) ) ) | 
						
							| 38 | 1 29 11 19 37 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁  −  𝑀 ) )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( 𝑀  +  ( 𝑁  −  𝑀 ) ) ) ) | 
						
							| 39 | 12 9 | pncan3d | ⊢ ( 𝜑  →  ( 𝑀  +  ( 𝑁  −  𝑀 ) )  =  𝑁 ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( 𝑀  +  ( 𝑁  −  𝑀 ) ) )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁  −  𝑀 ) )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 42 | 41 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁  −  𝑀 ) )  =  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 43 | 5 42 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁  −  𝑀 ) ) ) | 
						
							| 44 | 1 31 35 19 43 | taylplem1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] ( 𝑁  −  𝑀 ) )  ∩  ℤ ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) | 
						
							| 45 |  | eqid | ⊢ ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 )  =  ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) | 
						
							| 46 | 1 31 35 36 44 45 | tayl0 | ⊢ ( 𝜑  →  ( 𝐵  ∈  dom  ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 )  ∧  ( ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 )  =  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) ) | 
						
							| 47 | 46 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  𝑀 ) ( 𝑆  Tayl  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ) 𝐵 ) ‘ 𝐵 )  =  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) | 
						
							| 48 | 25 47 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ℂ  D𝑛  𝑇 ) ‘ 𝑀 ) ‘ 𝐵 )  =  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑀 ) ‘ 𝐵 ) ) |