| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylfval.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | taylfval.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | taylfval.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 4 |  | taylfval.n | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ ) ) | 
						
							| 5 |  | taylfval.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 6 |  | taylfval.t | ⊢ 𝑇  =  ( 𝑁 ( 𝑆  Tayl  𝐹 ) 𝐵 ) | 
						
							| 7 |  | recnprss | ⊢ ( 𝑆  ∈  { ℝ ,  ℂ }  →  𝑆  ⊆  ℂ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 9 | 3 8 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 11 | 10 | dmeqd | ⊢ ( 𝑘  =  0  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  =  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝑘  =  0  →  ( 𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 )  ↔  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ) ) | 
						
							| 13 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) 𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 14 |  | elxnn0 | ⊢ ( 𝑁  ∈  ℕ0*  ↔  ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ ) ) | 
						
							| 15 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑁  ∈  ℕ0*  →  0  ∈  ℝ* ) | 
						
							| 17 |  | xnn0xr | ⊢ ( 𝑁  ∈  ℕ0*  →  𝑁  ∈  ℝ* ) | 
						
							| 18 |  | xnn0ge0 | ⊢ ( 𝑁  ∈  ℕ0*  →  0  ≤  𝑁 ) | 
						
							| 19 |  | lbicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑁  ∈  ℝ*  ∧  0  ≤  𝑁 )  →  0  ∈  ( 0 [,] 𝑁 ) ) | 
						
							| 20 | 16 17 18 19 | syl3anc | ⊢ ( 𝑁  ∈  ℕ0*  →  0  ∈  ( 0 [,] 𝑁 ) ) | 
						
							| 21 | 14 20 | sylbir | ⊢ ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  →  0  ∈  ( 0 [,] 𝑁 ) ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 𝑁 ) ) | 
						
							| 23 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 24 | 22 23 | elind | ⊢ ( 𝜑  →  0  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 25 | 12 13 24 | rspcdva | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ) | 
						
							| 26 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 28 |  | elpm2r | ⊢ ( ( ( ℂ  ∈  V  ∧  𝑆  ∈  { ℝ ,  ℂ } )  ∧  ( 𝐹 : 𝐴 ⟶ ℂ  ∧  𝐴  ⊆  𝑆 ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 29 | 27 1 2 3 28 | syl22anc | ⊢ ( 𝜑  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 30 |  | dvn0 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 31 | 8 29 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  𝐹 ) | 
						
							| 32 | 31 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  dom  𝐹 ) | 
						
							| 33 | 2 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 34 | 32 33 | eqtrd | ⊢ ( 𝜑  →  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 )  =  𝐴 ) | 
						
							| 35 | 25 34 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 36 | 9 35 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 37 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 38 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 39 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 40 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 41 | 39 40 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  Mnd ) | 
						
							| 42 |  | ovex | ⊢ ( 0 [,] 𝑁 )  ∈  V | 
						
							| 43 | 42 | inex1 | ⊢ ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∈  V ) | 
						
							| 45 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 46 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 48 | 47 | elin2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑘  ∈  ℤ ) | 
						
							| 49 | 47 | elin1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑘  ∈  ( 0 [,] 𝑁 ) ) | 
						
							| 50 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 51 | 50 | rexrd | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ* ) | 
						
							| 52 |  | id | ⊢ ( 𝑁  =  +∞  →  𝑁  =  +∞ ) | 
						
							| 53 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 54 | 52 53 | eqeltrdi | ⊢ ( 𝑁  =  +∞  →  𝑁  ∈  ℝ* ) | 
						
							| 55 | 51 54 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ )  →  𝑁  ∈  ℝ* ) | 
						
							| 56 | 4 55 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℝ* ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑁  ∈  ℝ* ) | 
						
							| 58 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  𝑁  ∈  ℝ* )  →  ( 𝑘  ∈  ( 0 [,] 𝑁 )  ↔  ( 𝑘  ∈  ℝ*  ∧  0  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) ) ) | 
						
							| 59 | 15 57 58 | sylancr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( 𝑘  ∈  ( 0 [,] 𝑁 )  ↔  ( 𝑘  ∈  ℝ*  ∧  0  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) ) ) | 
						
							| 60 | 49 59 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( 𝑘  ∈  ℝ*  ∧  0  ≤  𝑘  ∧  𝑘  ≤  𝑁 ) ) | 
						
							| 61 | 60 | simp2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  0  ≤  𝑘 ) | 
						
							| 62 |  | elnn0z | ⊢ ( 𝑘  ∈  ℕ0  ↔  ( 𝑘  ∈  ℤ  ∧  0  ≤  𝑘 ) ) | 
						
							| 63 | 48 61 62 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 64 |  | dvnf | ⊢ ( ( 𝑆  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 65 | 45 46 63 64 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) : dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ⟶ ℂ ) | 
						
							| 66 | 65 5 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 67 | 63 | faccld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 68 | 67 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 69 | 67 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 70 | 66 68 69 | divcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 71 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  0  ∈  ℂ ) | 
						
							| 72 | 71 63 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( 0 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 73 | 70 72 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 74 | 73 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 )  ∩  ℤ ) ⟶ ℂ ) | 
						
							| 75 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } )  →  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 76 | 75 63 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 77 |  | eldifsni | ⊢ ( 𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } )  →  𝑘  ≠  0 ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  𝑘  ≠  0 ) | 
						
							| 79 |  | elnnne0 | ⊢ ( 𝑘  ∈  ℕ  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≠  0 ) ) | 
						
							| 80 | 76 78 79 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  𝑘  ∈  ℕ ) | 
						
							| 81 | 80 | 0expd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  ( 0 ↑ 𝑘 )  =  0 ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  0 ) ) | 
						
							| 83 | 70 | mul01d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  0 )  =  0 ) | 
						
							| 84 | 75 83 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  0 )  =  0 ) | 
						
							| 85 | 82 84 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∖  { 0 } ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) )  =  0 ) | 
						
							| 86 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 87 | 86 | inex2 | ⊢ ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∈  V | 
						
							| 88 | 87 | a1i | ⊢ ( 𝜑  →  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∈  V ) | 
						
							| 89 | 85 88 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  supp  0 )  ⊆  { 0 } ) | 
						
							| 90 | 37 38 41 44 24 74 89 | gsumpt | ⊢ ( 𝜑  →  ( ℂfld  Σg  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) )  =  ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ‘ 0 ) ) | 
						
							| 91 | 10 | fveq1d | ⊢ ( 𝑘  =  0  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  =  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( ! ‘ 𝑘 )  =  ( ! ‘ 0 ) ) | 
						
							| 93 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 94 | 92 93 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( ! ‘ 𝑘 )  =  1 ) | 
						
							| 95 | 91 94 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  =  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 ) ) | 
						
							| 96 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 0 ↑ 𝑘 )  =  ( 0 ↑ 0 ) ) | 
						
							| 97 |  | 0exp0e1 | ⊢ ( 0 ↑ 0 )  =  1 | 
						
							| 98 | 96 97 | eqtrdi | ⊢ ( 𝑘  =  0  →  ( 0 ↑ 𝑘 )  =  1 ) | 
						
							| 99 | 95 98 | oveq12d | ⊢ ( 𝑘  =  0  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 ) ) | 
						
							| 100 |  | eqid | ⊢ ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) | 
						
							| 101 |  | ovex | ⊢ ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 )  ∈  V | 
						
							| 102 | 99 100 101 | fvmpt | ⊢ ( 0  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  →  ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 ) ) | 
						
							| 103 | 24 102 | syl | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ‘ 0 )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 ) ) | 
						
							| 104 | 31 | fveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  =  ( ( 𝐹 ‘ 𝐵 )  /  1 ) ) | 
						
							| 106 | 2 35 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 107 | 106 | div1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  /  1 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 108 | 105 107 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 )  =  ( ( 𝐹 ‘ 𝐵 )  ·  1 ) ) | 
						
							| 110 | 106 | mulridd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  ·  1 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 111 | 109 110 | eqtrd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 0 ) ‘ 𝐵 )  /  1 )  ·  1 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 112 | 90 103 111 | 3eqtrd | ⊢ ( 𝜑  →  ( ℂfld  Σg  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 113 |  | ringcmn | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  CMnd ) | 
						
							| 114 | 39 113 | mp1i | ⊢ ( 𝜑  →  ℂfld  ∈  CMnd ) | 
						
							| 115 |  | cnfldtps | ⊢ ℂfld  ∈  TopSp | 
						
							| 116 | 115 | a1i | ⊢ ( 𝜑  →  ℂfld  ∈  TopSp ) | 
						
							| 117 |  | mptexg | ⊢ ( ( ( 0 [,] 𝑁 )  ∩  ℤ )  ∈  V  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  ∈  V ) | 
						
							| 118 | 87 117 | mp1i | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  ∈  V ) | 
						
							| 119 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) | 
						
							| 120 | 119 | a1i | ⊢ ( 𝜑  →  Fun  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ) | 
						
							| 121 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 122 | 121 | a1i | ⊢ ( 𝜑  →  0  ∈  V ) | 
						
							| 123 |  | snfi | ⊢ { 0 }  ∈  Fin | 
						
							| 124 | 123 | a1i | ⊢ ( 𝜑  →  { 0 }  ∈  Fin ) | 
						
							| 125 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  ∧  0  ∈  V )  ∧  ( { 0 }  ∈  Fin  ∧  ( ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  supp  0 )  ⊆  { 0 } ) )  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  finSupp  0 ) | 
						
							| 126 | 118 120 122 124 89 125 | syl32anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) )  finSupp  0 ) | 
						
							| 127 | 37 38 114 116 44 74 126 | tsmsid | ⊢ ( 𝜑  →  ( ℂfld  Σg  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) )  ∈  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ) ) | 
						
							| 128 | 112 127 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ) ) | 
						
							| 129 | 36 | subidd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐵 )  =  0 ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 )  =  ( 0 ↑ 𝑘 ) ) | 
						
							| 131 | 130 | oveq2d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 ) )  =  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) | 
						
							| 132 | 131 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( 𝜑  →  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 ) ) ) )  =  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( 0 ↑ 𝑘 ) ) ) ) ) | 
						
							| 134 | 128 133 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 ) ) ) ) ) | 
						
							| 135 | 1 2 3 4 5 6 | eltayl | ⊢ ( 𝜑  →  ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 )  ↔  ( 𝐵  ∈  ℂ  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ( ℂfld  tsums  ( 𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ )  ↦  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐵  −  𝐵 ) ↑ 𝑘 ) ) ) ) ) ) ) | 
						
							| 136 | 36 134 135 | mpbir2and | ⊢ ( 𝜑  →  𝐵 𝑇 ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 137 | 1 2 3 4 5 6 | taylf | ⊢ ( 𝜑  →  𝑇 : dom  𝑇 ⟶ ℂ ) | 
						
							| 138 |  | ffun | ⊢ ( 𝑇 : dom  𝑇 ⟶ ℂ  →  Fun  𝑇 ) | 
						
							| 139 |  | funbrfv2b | ⊢ ( Fun  𝑇  →  ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 )  ↔  ( 𝐵  ∈  dom  𝑇  ∧  ( 𝑇 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 140 | 137 138 139 | 3syl | ⊢ ( 𝜑  →  ( 𝐵 𝑇 ( 𝐹 ‘ 𝐵 )  ↔  ( 𝐵  ∈  dom  𝑇  ∧  ( 𝑇 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 141 | 136 140 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  dom  𝑇  ∧  ( 𝑇 ‘ 𝐵 )  =  ( 𝐹 ‘ 𝐵 ) ) ) |