| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylfval.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | taylfval.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | taylfval.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | taylfval.n |  |-  ( ph -> ( N e. NN0 \/ N = +oo ) ) | 
						
							| 5 |  | taylfval.b |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 6 |  | taylfval.t |  |-  T = ( N ( S Tayl F ) B ) | 
						
							| 7 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 9 | 3 8 | sstrd |  |-  ( ph -> A C_ CC ) | 
						
							| 10 |  | fveq2 |  |-  ( k = 0 -> ( ( S Dn F ) ` k ) = ( ( S Dn F ) ` 0 ) ) | 
						
							| 11 | 10 | dmeqd |  |-  ( k = 0 -> dom ( ( S Dn F ) ` k ) = dom ( ( S Dn F ) ` 0 ) ) | 
						
							| 12 | 11 | eleq2d |  |-  ( k = 0 -> ( B e. dom ( ( S Dn F ) ` k ) <-> B e. dom ( ( S Dn F ) ` 0 ) ) ) | 
						
							| 13 | 5 | ralrimiva |  |-  ( ph -> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 14 |  | elxnn0 |  |-  ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) | 
						
							| 15 |  | 0xr |  |-  0 e. RR* | 
						
							| 16 | 15 | a1i |  |-  ( N e. NN0* -> 0 e. RR* ) | 
						
							| 17 |  | xnn0xr |  |-  ( N e. NN0* -> N e. RR* ) | 
						
							| 18 |  | xnn0ge0 |  |-  ( N e. NN0* -> 0 <_ N ) | 
						
							| 19 |  | lbicc2 |  |-  ( ( 0 e. RR* /\ N e. RR* /\ 0 <_ N ) -> 0 e. ( 0 [,] N ) ) | 
						
							| 20 | 16 17 18 19 | syl3anc |  |-  ( N e. NN0* -> 0 e. ( 0 [,] N ) ) | 
						
							| 21 | 14 20 | sylbir |  |-  ( ( N e. NN0 \/ N = +oo ) -> 0 e. ( 0 [,] N ) ) | 
						
							| 22 | 4 21 | syl |  |-  ( ph -> 0 e. ( 0 [,] N ) ) | 
						
							| 23 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 24 | 22 23 | elind |  |-  ( ph -> 0 e. ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 25 | 12 13 24 | rspcdva |  |-  ( ph -> B e. dom ( ( S Dn F ) ` 0 ) ) | 
						
							| 26 |  | cnex |  |-  CC e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 28 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 29 | 27 1 2 3 28 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 30 |  | dvn0 |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 31 | 8 29 30 | syl2anc |  |-  ( ph -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 32 | 31 | dmeqd |  |-  ( ph -> dom ( ( S Dn F ) ` 0 ) = dom F ) | 
						
							| 33 | 2 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 34 | 32 33 | eqtrd |  |-  ( ph -> dom ( ( S Dn F ) ` 0 ) = A ) | 
						
							| 35 | 25 34 | eleqtrd |  |-  ( ph -> B e. A ) | 
						
							| 36 | 9 35 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 37 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 38 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 39 |  | cnring |  |-  CCfld e. Ring | 
						
							| 40 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 41 | 39 40 | mp1i |  |-  ( ph -> CCfld e. Mnd ) | 
						
							| 42 |  | ovex |  |-  ( 0 [,] N ) e. _V | 
						
							| 43 | 42 | inex1 |  |-  ( ( 0 [,] N ) i^i ZZ ) e. _V | 
						
							| 44 | 43 | a1i |  |-  ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) | 
						
							| 45 | 1 | adantr |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> S e. { RR , CC } ) | 
						
							| 46 | 29 | adantr |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 48 | 47 | elin2d |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ZZ ) | 
						
							| 49 | 47 | elin1d |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 [,] N ) ) | 
						
							| 50 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 51 | 50 | rexrd |  |-  ( N e. NN0 -> N e. RR* ) | 
						
							| 52 |  | id |  |-  ( N = +oo -> N = +oo ) | 
						
							| 53 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 54 | 52 53 | eqeltrdi |  |-  ( N = +oo -> N e. RR* ) | 
						
							| 55 | 51 54 | jaoi |  |-  ( ( N e. NN0 \/ N = +oo ) -> N e. RR* ) | 
						
							| 56 | 4 55 | syl |  |-  ( ph -> N e. RR* ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> N e. RR* ) | 
						
							| 58 |  | elicc1 |  |-  ( ( 0 e. RR* /\ N e. RR* ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) | 
						
							| 59 | 15 57 58 | sylancr |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) | 
						
							| 60 | 49 59 | mpbid |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) | 
						
							| 61 | 60 | simp2d |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 <_ k ) | 
						
							| 62 |  | elnn0z |  |-  ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) | 
						
							| 63 | 48 61 62 | sylanbrc |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. NN0 ) | 
						
							| 64 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 65 | 45 46 63 64 | syl3anc |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 66 | 65 5 | ffvelcdmd |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) | 
						
							| 67 | 63 | faccld |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. NN ) | 
						
							| 68 | 67 | nncnd |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. CC ) | 
						
							| 69 | 67 | nnne0d |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) =/= 0 ) | 
						
							| 70 | 66 68 69 | divcld |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 71 |  | 0cnd |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 e. CC ) | 
						
							| 72 | 71 63 | expcld |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( 0 ^ k ) e. CC ) | 
						
							| 73 | 70 72 | mulcld |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) e. CC ) | 
						
							| 74 | 73 | fmpttd |  |-  ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) | 
						
							| 75 |  | eldifi |  |-  ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 76 | 75 63 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN0 ) | 
						
							| 77 |  | eldifsni |  |-  ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k =/= 0 ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k =/= 0 ) | 
						
							| 79 |  | elnnne0 |  |-  ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) | 
						
							| 80 | 76 78 79 | sylanbrc |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN ) | 
						
							| 81 | 80 | 0expd |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( 0 ^ k ) = 0 ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) | 
						
							| 83 | 70 | mul01d |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) | 
						
							| 84 | 75 83 | sylan2 |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) | 
						
							| 85 | 82 84 | eqtrd |  |-  ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = 0 ) | 
						
							| 86 |  | zex |  |-  ZZ e. _V | 
						
							| 87 | 86 | inex2 |  |-  ( ( 0 [,] N ) i^i ZZ ) e. _V | 
						
							| 88 | 87 | a1i |  |-  ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) | 
						
							| 89 | 85 88 | suppss2 |  |-  ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) | 
						
							| 90 | 37 38 41 44 24 74 89 | gsumpt |  |-  ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) ) | 
						
							| 91 | 10 | fveq1d |  |-  ( k = 0 -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn F ) ` 0 ) ` B ) ) | 
						
							| 92 |  | fveq2 |  |-  ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) | 
						
							| 93 |  | fac0 |  |-  ( ! ` 0 ) = 1 | 
						
							| 94 | 92 93 | eqtrdi |  |-  ( k = 0 -> ( ! ` k ) = 1 ) | 
						
							| 95 | 91 94 | oveq12d |  |-  ( k = 0 -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) = ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) ) | 
						
							| 96 |  | oveq2 |  |-  ( k = 0 -> ( 0 ^ k ) = ( 0 ^ 0 ) ) | 
						
							| 97 |  | 0exp0e1 |  |-  ( 0 ^ 0 ) = 1 | 
						
							| 98 | 96 97 | eqtrdi |  |-  ( k = 0 -> ( 0 ^ k ) = 1 ) | 
						
							| 99 | 95 98 | oveq12d |  |-  ( k = 0 -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) | 
						
							| 100 |  | eqid |  |-  ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) | 
						
							| 101 |  | ovex |  |-  ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) e. _V | 
						
							| 102 | 99 100 101 | fvmpt |  |-  ( 0 e. ( ( 0 [,] N ) i^i ZZ ) -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) | 
						
							| 103 | 24 102 | syl |  |-  ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) | 
						
							| 104 | 31 | fveq1d |  |-  ( ph -> ( ( ( S Dn F ) ` 0 ) ` B ) = ( F ` B ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( ( F ` B ) / 1 ) ) | 
						
							| 106 | 2 35 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. CC ) | 
						
							| 107 | 106 | div1d |  |-  ( ph -> ( ( F ` B ) / 1 ) = ( F ` B ) ) | 
						
							| 108 | 105 107 | eqtrd |  |-  ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( F ` B ) ) | 
						
							| 109 | 108 | oveq1d |  |-  ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( ( F ` B ) x. 1 ) ) | 
						
							| 110 | 106 | mulridd |  |-  ( ph -> ( ( F ` B ) x. 1 ) = ( F ` B ) ) | 
						
							| 111 | 109 110 | eqtrd |  |-  ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( F ` B ) ) | 
						
							| 112 | 90 103 111 | 3eqtrd |  |-  ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( F ` B ) ) | 
						
							| 113 |  | ringcmn |  |-  ( CCfld e. Ring -> CCfld e. CMnd ) | 
						
							| 114 | 39 113 | mp1i |  |-  ( ph -> CCfld e. CMnd ) | 
						
							| 115 |  | cnfldtps |  |-  CCfld e. TopSp | 
						
							| 116 | 115 | a1i |  |-  ( ph -> CCfld e. TopSp ) | 
						
							| 117 |  | mptexg |  |-  ( ( ( 0 [,] N ) i^i ZZ ) e. _V -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) | 
						
							| 118 | 87 117 | mp1i |  |-  ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) | 
						
							| 119 |  | funmpt |  |-  Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) | 
						
							| 120 | 119 | a1i |  |-  ( ph -> Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) | 
						
							| 121 |  | c0ex |  |-  0 e. _V | 
						
							| 122 | 121 | a1i |  |-  ( ph -> 0 e. _V ) | 
						
							| 123 |  | snfi |  |-  { 0 } e. Fin | 
						
							| 124 | 123 | a1i |  |-  ( ph -> { 0 } e. Fin ) | 
						
							| 125 |  | suppssfifsupp |  |-  ( ( ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V /\ Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) /\ 0 e. _V ) /\ ( { 0 } e. Fin /\ ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) | 
						
							| 126 | 118 120 122 124 89 125 | syl32anc |  |-  ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) | 
						
							| 127 | 37 38 114 116 44 74 126 | tsmsid |  |-  ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) | 
						
							| 128 | 112 127 | eqeltrrd |  |-  ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) | 
						
							| 129 | 36 | subidd |  |-  ( ph -> ( B - B ) = 0 ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ph -> ( ( B - B ) ^ k ) = ( 0 ^ k ) ) | 
						
							| 131 | 130 | oveq2d |  |-  ( ph -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) | 
						
							| 132 | 131 | mpteq2dv |  |-  ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ph -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) | 
						
							| 134 | 128 133 | eleqtrrd |  |-  ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) | 
						
							| 135 | 1 2 3 4 5 6 | eltayl |  |-  ( ph -> ( B T ( F ` B ) <-> ( B e. CC /\ ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) ) ) | 
						
							| 136 | 36 134 135 | mpbir2and |  |-  ( ph -> B T ( F ` B ) ) | 
						
							| 137 | 1 2 3 4 5 6 | taylf |  |-  ( ph -> T : dom T --> CC ) | 
						
							| 138 |  | ffun |  |-  ( T : dom T --> CC -> Fun T ) | 
						
							| 139 |  | funbrfv2b |  |-  ( Fun T -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) | 
						
							| 140 | 137 138 139 | 3syl |  |-  ( ph -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) | 
						
							| 141 | 136 140 | mpbid |  |-  ( ph -> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) |