| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
| 3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
| 4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
| 5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
| 6 |
|
taylfval.t |
|- T = ( N ( S Tayl F ) B ) |
| 7 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 8 |
1 7
|
syl |
|- ( ph -> S C_ CC ) |
| 9 |
3 8
|
sstrd |
|- ( ph -> A C_ CC ) |
| 10 |
|
fveq2 |
|- ( k = 0 -> ( ( S Dn F ) ` k ) = ( ( S Dn F ) ` 0 ) ) |
| 11 |
10
|
dmeqd |
|- ( k = 0 -> dom ( ( S Dn F ) ` k ) = dom ( ( S Dn F ) ` 0 ) ) |
| 12 |
11
|
eleq2d |
|- ( k = 0 -> ( B e. dom ( ( S Dn F ) ` k ) <-> B e. dom ( ( S Dn F ) ` 0 ) ) ) |
| 13 |
5
|
ralrimiva |
|- ( ph -> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) |
| 14 |
|
elxnn0 |
|- ( N e. NN0* <-> ( N e. NN0 \/ N = +oo ) ) |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
15
|
a1i |
|- ( N e. NN0* -> 0 e. RR* ) |
| 17 |
|
xnn0xr |
|- ( N e. NN0* -> N e. RR* ) |
| 18 |
|
xnn0ge0 |
|- ( N e. NN0* -> 0 <_ N ) |
| 19 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ N e. RR* /\ 0 <_ N ) -> 0 e. ( 0 [,] N ) ) |
| 20 |
16 17 18 19
|
syl3anc |
|- ( N e. NN0* -> 0 e. ( 0 [,] N ) ) |
| 21 |
14 20
|
sylbir |
|- ( ( N e. NN0 \/ N = +oo ) -> 0 e. ( 0 [,] N ) ) |
| 22 |
4 21
|
syl |
|- ( ph -> 0 e. ( 0 [,] N ) ) |
| 23 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 24 |
22 23
|
elind |
|- ( ph -> 0 e. ( ( 0 [,] N ) i^i ZZ ) ) |
| 25 |
12 13 24
|
rspcdva |
|- ( ph -> B e. dom ( ( S Dn F ) ` 0 ) ) |
| 26 |
|
cnex |
|- CC e. _V |
| 27 |
26
|
a1i |
|- ( ph -> CC e. _V ) |
| 28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 29 |
27 1 2 3 28
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 30 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
| 31 |
8 29 30
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 0 ) = F ) |
| 32 |
31
|
dmeqd |
|- ( ph -> dom ( ( S Dn F ) ` 0 ) = dom F ) |
| 33 |
2
|
fdmd |
|- ( ph -> dom F = A ) |
| 34 |
32 33
|
eqtrd |
|- ( ph -> dom ( ( S Dn F ) ` 0 ) = A ) |
| 35 |
25 34
|
eleqtrd |
|- ( ph -> B e. A ) |
| 36 |
9 35
|
sseldd |
|- ( ph -> B e. CC ) |
| 37 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 38 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 39 |
|
cnring |
|- CCfld e. Ring |
| 40 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
| 41 |
39 40
|
mp1i |
|- ( ph -> CCfld e. Mnd ) |
| 42 |
|
ovex |
|- ( 0 [,] N ) e. _V |
| 43 |
42
|
inex1 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
| 44 |
43
|
a1i |
|- ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
| 45 |
1
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> S e. { RR , CC } ) |
| 46 |
29
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F e. ( CC ^pm S ) ) |
| 47 |
|
simpr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
| 48 |
47
|
elin2d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ZZ ) |
| 49 |
47
|
elin1d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 [,] N ) ) |
| 50 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 51 |
50
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
| 52 |
|
id |
|- ( N = +oo -> N = +oo ) |
| 53 |
|
pnfxr |
|- +oo e. RR* |
| 54 |
52 53
|
eqeltrdi |
|- ( N = +oo -> N e. RR* ) |
| 55 |
51 54
|
jaoi |
|- ( ( N e. NN0 \/ N = +oo ) -> N e. RR* ) |
| 56 |
4 55
|
syl |
|- ( ph -> N e. RR* ) |
| 57 |
56
|
adantr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> N e. RR* ) |
| 58 |
|
elicc1 |
|- ( ( 0 e. RR* /\ N e. RR* ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
| 59 |
15 57 58
|
sylancr |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
| 60 |
49 59
|
mpbid |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) |
| 61 |
60
|
simp2d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 <_ k ) |
| 62 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
| 63 |
48 61 62
|
sylanbrc |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. NN0 ) |
| 64 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 65 |
45 46 63 64
|
syl3anc |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
| 66 |
65 5
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
| 67 |
63
|
faccld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. NN ) |
| 68 |
67
|
nncnd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. CC ) |
| 69 |
67
|
nnne0d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) =/= 0 ) |
| 70 |
66 68 69
|
divcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
| 71 |
|
0cnd |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 e. CC ) |
| 72 |
71 63
|
expcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( 0 ^ k ) e. CC ) |
| 73 |
70 72
|
mulcld |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) e. CC ) |
| 74 |
73
|
fmpttd |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) : ( ( 0 [,] N ) i^i ZZ ) --> CC ) |
| 75 |
|
eldifi |
|- ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
| 76 |
75 63
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN0 ) |
| 77 |
|
eldifsni |
|- ( k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) -> k =/= 0 ) |
| 78 |
77
|
adantl |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k =/= 0 ) |
| 79 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
| 80 |
76 78 79
|
sylanbrc |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> k e. NN ) |
| 81 |
80
|
0expd |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( 0 ^ k ) = 0 ) |
| 82 |
81
|
oveq2d |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) |
| 83 |
70
|
mul01d |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
| 84 |
75 83
|
sylan2 |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) |
| 85 |
82 84
|
eqtrd |
|- ( ( ph /\ k e. ( ( ( 0 [,] N ) i^i ZZ ) \ { 0 } ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = 0 ) |
| 86 |
|
zex |
|- ZZ e. _V |
| 87 |
86
|
inex2 |
|- ( ( 0 [,] N ) i^i ZZ ) e. _V |
| 88 |
87
|
a1i |
|- ( ph -> ( ( 0 [,] N ) i^i ZZ ) e. _V ) |
| 89 |
85 88
|
suppss2 |
|- ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) |
| 90 |
37 38 41 44 24 74 89
|
gsumpt |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) ) |
| 91 |
10
|
fveq1d |
|- ( k = 0 -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn F ) ` 0 ) ` B ) ) |
| 92 |
|
fveq2 |
|- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
| 93 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 94 |
92 93
|
eqtrdi |
|- ( k = 0 -> ( ! ` k ) = 1 ) |
| 95 |
91 94
|
oveq12d |
|- ( k = 0 -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) = ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) ) |
| 96 |
|
oveq2 |
|- ( k = 0 -> ( 0 ^ k ) = ( 0 ^ 0 ) ) |
| 97 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
| 98 |
96 97
|
eqtrdi |
|- ( k = 0 -> ( 0 ^ k ) = 1 ) |
| 99 |
95 98
|
oveq12d |
|- ( k = 0 -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
| 100 |
|
eqid |
|- ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
| 101 |
|
ovex |
|- ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) e. _V |
| 102 |
99 100 101
|
fvmpt |
|- ( 0 e. ( ( 0 [,] N ) i^i ZZ ) -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
| 103 |
24 102
|
syl |
|- ( ph -> ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ` 0 ) = ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) ) |
| 104 |
31
|
fveq1d |
|- ( ph -> ( ( ( S Dn F ) ` 0 ) ` B ) = ( F ` B ) ) |
| 105 |
104
|
oveq1d |
|- ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( ( F ` B ) / 1 ) ) |
| 106 |
2 35
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. CC ) |
| 107 |
106
|
div1d |
|- ( ph -> ( ( F ` B ) / 1 ) = ( F ` B ) ) |
| 108 |
105 107
|
eqtrd |
|- ( ph -> ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) = ( F ` B ) ) |
| 109 |
108
|
oveq1d |
|- ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( ( F ` B ) x. 1 ) ) |
| 110 |
106
|
mulridd |
|- ( ph -> ( ( F ` B ) x. 1 ) = ( F ` B ) ) |
| 111 |
109 110
|
eqtrd |
|- ( ph -> ( ( ( ( ( S Dn F ) ` 0 ) ` B ) / 1 ) x. 1 ) = ( F ` B ) ) |
| 112 |
90 103 111
|
3eqtrd |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) = ( F ` B ) ) |
| 113 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
| 114 |
39 113
|
mp1i |
|- ( ph -> CCfld e. CMnd ) |
| 115 |
|
cnfldtps |
|- CCfld e. TopSp |
| 116 |
115
|
a1i |
|- ( ph -> CCfld e. TopSp ) |
| 117 |
|
mptexg |
|- ( ( ( 0 [,] N ) i^i ZZ ) e. _V -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) |
| 118 |
87 117
|
mp1i |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V ) |
| 119 |
|
funmpt |
|- Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
| 120 |
119
|
a1i |
|- ( ph -> Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) |
| 121 |
|
c0ex |
|- 0 e. _V |
| 122 |
121
|
a1i |
|- ( ph -> 0 e. _V ) |
| 123 |
|
snfi |
|- { 0 } e. Fin |
| 124 |
123
|
a1i |
|- ( ph -> { 0 } e. Fin ) |
| 125 |
|
suppssfifsupp |
|- ( ( ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) e. _V /\ Fun ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) /\ 0 e. _V ) /\ ( { 0 } e. Fin /\ ( ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) supp 0 ) C_ { 0 } ) ) -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) |
| 126 |
118 120 122 124 89 125
|
syl32anc |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) finSupp 0 ) |
| 127 |
37 38 114 116 44 74 126
|
tsmsid |
|- ( ph -> ( CCfld gsum ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
| 128 |
112 127
|
eqeltrrd |
|- ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
| 129 |
36
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
| 130 |
129
|
oveq1d |
|- ( ph -> ( ( B - B ) ^ k ) = ( 0 ^ k ) ) |
| 131 |
130
|
oveq2d |
|- ( ph -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) |
| 132 |
131
|
mpteq2dv |
|- ( ph -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) |
| 133 |
132
|
oveq2d |
|- ( ph -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( 0 ^ k ) ) ) ) ) |
| 134 |
128 133
|
eleqtrrd |
|- ( ph -> ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) |
| 135 |
1 2 3 4 5 6
|
eltayl |
|- ( ph -> ( B T ( F ` B ) <-> ( B e. CC /\ ( F ` B ) e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( B - B ) ^ k ) ) ) ) ) ) ) |
| 136 |
36 134 135
|
mpbir2and |
|- ( ph -> B T ( F ` B ) ) |
| 137 |
1 2 3 4 5 6
|
taylf |
|- ( ph -> T : dom T --> CC ) |
| 138 |
|
ffun |
|- ( T : dom T --> CC -> Fun T ) |
| 139 |
|
funbrfv2b |
|- ( Fun T -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) |
| 140 |
137 138 139
|
3syl |
|- ( ph -> ( B T ( F ` B ) <-> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) ) |
| 141 |
136 140
|
mpbid |
|- ( ph -> ( B e. dom T /\ ( T ` B ) = ( F ` B ) ) ) |