| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvntaylp0.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvntaylp0.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | dvntaylp0.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | dvntaylp0.m |  |-  ( ph -> M e. ( 0 ... N ) ) | 
						
							| 5 |  | dvntaylp0.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 6 |  | dvntaylp0.t |  |-  T = ( N ( S Tayl F ) B ) | 
						
							| 7 |  | elfz3nn0 |  |-  ( M e. ( 0 ... N ) -> N e. NN0 ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> N e. NN0 ) | 
						
							| 9 | 8 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 10 |  | elfznn0 |  |-  ( M e. ( 0 ... N ) -> M e. NN0 ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> M e. NN0 ) | 
						
							| 12 | 11 | nn0cnd |  |-  ( ph -> M e. CC ) | 
						
							| 13 | 9 12 | npcand |  |-  ( ph -> ( ( N - M ) + M ) = N ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = ( N ( S Tayl F ) B ) ) | 
						
							| 15 | 14 6 | eqtr4di |  |-  ( ph -> ( ( ( N - M ) + M ) ( S Tayl F ) B ) = T ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ph -> ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) = ( CC Dn T ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( CC Dn T ) ` M ) ) | 
						
							| 18 |  | fznn0sub |  |-  ( M e. ( 0 ... N ) -> ( N - M ) e. NN0 ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> ( N - M ) e. NN0 ) | 
						
							| 20 | 13 | fveq2d |  |-  ( ph -> ( ( S Dn F ) ` ( ( N - M ) + M ) ) = ( ( S Dn F ) ` N ) ) | 
						
							| 21 | 20 | dmeqd |  |-  ( ph -> dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) = dom ( ( S Dn F ) ` N ) ) | 
						
							| 22 | 5 21 | eleqtrrd |  |-  ( ph -> B e. dom ( ( S Dn F ) ` ( ( N - M ) + M ) ) ) | 
						
							| 23 | 1 2 3 11 19 22 | dvntaylp |  |-  ( ph -> ( ( CC Dn ( ( ( N - M ) + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) | 
						
							| 24 | 17 23 | eqtr3d |  |-  ( ph -> ( ( CC Dn T ) ` M ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) | 
						
							| 25 | 24 | fveq1d |  |-  ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) ) | 
						
							| 26 |  | cnex |  |-  CC e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 28 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 29 | 27 1 2 3 28 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 30 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) | 
						
							| 31 | 1 29 11 30 | syl3anc |  |-  ( ph -> ( ( S Dn F ) ` M ) : dom ( ( S Dn F ) ` M ) --> CC ) | 
						
							| 32 |  | dvnbss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ M e. NN0 ) -> dom ( ( S Dn F ) ` M ) C_ dom F ) | 
						
							| 33 | 1 29 11 32 | syl3anc |  |-  ( ph -> dom ( ( S Dn F ) ` M ) C_ dom F ) | 
						
							| 34 | 2 33 | fssdmd |  |-  ( ph -> dom ( ( S Dn F ) ` M ) C_ A ) | 
						
							| 35 | 34 3 | sstrd |  |-  ( ph -> dom ( ( S Dn F ) ` M ) C_ S ) | 
						
							| 36 | 19 | orcd |  |-  ( ph -> ( ( N - M ) e. NN0 \/ ( N - M ) = +oo ) ) | 
						
							| 37 |  | dvnadd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ ( N - M ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) | 
						
							| 38 | 1 29 11 19 37 | syl22anc |  |-  ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` ( M + ( N - M ) ) ) ) | 
						
							| 39 | 12 9 | pncan3d |  |-  ( ph -> ( M + ( N - M ) ) = N ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ph -> ( ( S Dn F ) ` ( M + ( N - M ) ) ) = ( ( S Dn F ) ` N ) ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( ph -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = ( ( S Dn F ) ` N ) ) | 
						
							| 42 | 41 | dmeqd |  |-  ( ph -> dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) = dom ( ( S Dn F ) ` N ) ) | 
						
							| 43 | 5 42 | eleqtrrd |  |-  ( ph -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( N - M ) ) ) | 
						
							| 44 | 1 31 35 19 43 | taylplem1 |  |-  ( ( ph /\ k e. ( ( 0 [,] ( N - M ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) | 
						
							| 45 |  | eqid |  |-  ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) = ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) | 
						
							| 46 | 1 31 35 36 44 45 | tayl0 |  |-  ( ph -> ( B e. dom ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) /\ ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) ) | 
						
							| 47 | 46 | simprd |  |-  ( ph -> ( ( ( N - M ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) | 
						
							| 48 | 25 47 | eqtrd |  |-  ( ph -> ( ( ( CC Dn T ) ` M ) ` B ) = ( ( ( S Dn F ) ` M ) ` B ) ) |