| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvntaylp.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvntaylp.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | dvntaylp.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | dvntaylp.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | dvntaylp.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | dvntaylp.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` ( N + M ) ) ) | 
						
							| 7 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 8 | 4 7 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 9 |  | eluzfz2b |  |-  ( M e. ( ZZ>= ` 0 ) <-> M e. ( 0 ... M ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 11 |  | fveq2 |  |-  ( m = 0 -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) ) | 
						
							| 12 |  | fveq2 |  |-  ( m = 0 -> ( ( S Dn F ) ` m ) = ( ( S Dn F ) ` 0 ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( m = 0 -> ( S Tayl ( ( S Dn F ) ` m ) ) = ( S Tayl ( ( S Dn F ) ` 0 ) ) ) | 
						
							| 14 |  | oveq2 |  |-  ( m = 0 -> ( M - m ) = ( M - 0 ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( m = 0 -> ( N + ( M - m ) ) = ( N + ( M - 0 ) ) ) | 
						
							| 16 |  | eqidd |  |-  ( m = 0 -> B = B ) | 
						
							| 17 | 13 15 16 | oveq123d |  |-  ( m = 0 -> ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) = ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) ) | 
						
							| 18 | 11 17 | eqeq12d |  |-  ( m = 0 -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) <-> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) ) ) | 
						
							| 19 | 18 | imbi2d |  |-  ( m = 0 -> ( ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) ) <-> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( m = n -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) ) | 
						
							| 21 |  | fveq2 |  |-  ( m = n -> ( ( S Dn F ) ` m ) = ( ( S Dn F ) ` n ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( m = n -> ( S Tayl ( ( S Dn F ) ` m ) ) = ( S Tayl ( ( S Dn F ) ` n ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( m = n -> ( M - m ) = ( M - n ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( m = n -> ( N + ( M - m ) ) = ( N + ( M - n ) ) ) | 
						
							| 25 |  | eqidd |  |-  ( m = n -> B = B ) | 
						
							| 26 | 22 24 25 | oveq123d |  |-  ( m = n -> ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) | 
						
							| 27 | 20 26 | eqeq12d |  |-  ( m = n -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) <-> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( m = n -> ( ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) ) <-> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) ) | 
						
							| 30 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( ( S Dn F ) ` m ) = ( ( S Dn F ) ` ( n + 1 ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( m = ( n + 1 ) -> ( S Tayl ( ( S Dn F ) ` m ) ) = ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) ) | 
						
							| 32 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( M - m ) = ( M - ( n + 1 ) ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( m = ( n + 1 ) -> ( N + ( M - m ) ) = ( N + ( M - ( n + 1 ) ) ) ) | 
						
							| 34 |  | eqidd |  |-  ( m = ( n + 1 ) -> B = B ) | 
						
							| 35 | 31 33 34 | oveq123d |  |-  ( m = ( n + 1 ) -> ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) | 
						
							| 36 | 29 35 | eqeq12d |  |-  ( m = ( n + 1 ) -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) <-> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) ) | 
						
							| 37 | 36 | imbi2d |  |-  ( m = ( n + 1 ) -> ( ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) ) <-> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( m = M -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) ) | 
						
							| 39 |  | fveq2 |  |-  ( m = M -> ( ( S Dn F ) ` m ) = ( ( S Dn F ) ` M ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( m = M -> ( S Tayl ( ( S Dn F ) ` m ) ) = ( S Tayl ( ( S Dn F ) ` M ) ) ) | 
						
							| 41 |  | oveq2 |  |-  ( m = M -> ( M - m ) = ( M - M ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( m = M -> ( N + ( M - m ) ) = ( N + ( M - M ) ) ) | 
						
							| 43 |  | eqidd |  |-  ( m = M -> B = B ) | 
						
							| 44 | 40 42 43 | oveq123d |  |-  ( m = M -> ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) = ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) | 
						
							| 45 | 38 44 | eqeq12d |  |-  ( m = M -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) <-> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) ) | 
						
							| 46 | 45 | imbi2d |  |-  ( m = M -> ( ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` m ) = ( ( N + ( M - m ) ) ( S Tayl ( ( S Dn F ) ` m ) ) B ) ) <-> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) ) ) | 
						
							| 47 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 48 |  | mapsspm |  |-  ( CC ^m CC ) C_ ( CC ^pm CC ) | 
						
							| 49 | 5 4 | nn0addcld |  |-  ( ph -> ( N + M ) e. NN0 ) | 
						
							| 50 |  | eqid |  |-  ( ( N + M ) ( S Tayl F ) B ) = ( ( N + M ) ( S Tayl F ) B ) | 
						
							| 51 | 1 2 3 49 6 50 | taylpf |  |-  ( ph -> ( ( N + M ) ( S Tayl F ) B ) : CC --> CC ) | 
						
							| 52 |  | cnex |  |-  CC e. _V | 
						
							| 53 | 52 52 | elmap |  |-  ( ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^m CC ) <-> ( ( N + M ) ( S Tayl F ) B ) : CC --> CC ) | 
						
							| 54 | 51 53 | sylibr |  |-  ( ph -> ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^m CC ) ) | 
						
							| 55 | 48 54 | sselid |  |-  ( ph -> ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^pm CC ) ) | 
						
							| 56 |  | dvn0 |  |-  ( ( CC C_ CC /\ ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^pm CC ) ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + M ) ( S Tayl F ) B ) ) | 
						
							| 57 | 47 55 56 | syl2anc |  |-  ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + M ) ( S Tayl F ) B ) ) | 
						
							| 58 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 59 | 1 58 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 60 | 52 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 61 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 62 | 60 1 2 3 61 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 63 |  | dvn0 |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 64 | 59 62 63 | syl2anc |  |-  ( ph -> ( ( S Dn F ) ` 0 ) = F ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ph -> ( S Tayl ( ( S Dn F ) ` 0 ) ) = ( S Tayl F ) ) | 
						
							| 66 | 4 | nn0cnd |  |-  ( ph -> M e. CC ) | 
						
							| 67 | 66 | subid1d |  |-  ( ph -> ( M - 0 ) = M ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ph -> ( N + ( M - 0 ) ) = ( N + M ) ) | 
						
							| 69 |  | eqidd |  |-  ( ph -> B = B ) | 
						
							| 70 | 65 68 69 | oveq123d |  |-  ( ph -> ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) = ( ( N + M ) ( S Tayl F ) B ) ) | 
						
							| 71 | 57 70 | eqtr4d |  |-  ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) ) | 
						
							| 72 | 71 | a1i |  |-  ( M e. ( ZZ>= ` 0 ) -> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` 0 ) = ( ( N + ( M - 0 ) ) ( S Tayl ( ( S Dn F ) ` 0 ) ) B ) ) ) | 
						
							| 73 |  | oveq2 |  |-  ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) -> ( CC _D ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) ) = ( CC _D ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) | 
						
							| 74 |  | ssidd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> CC C_ CC ) | 
						
							| 75 | 55 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^pm CC ) ) | 
						
							| 76 |  | elfzouz |  |-  ( n e. ( 0 ..^ M ) -> n e. ( ZZ>= ` 0 ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> n e. ( ZZ>= ` 0 ) ) | 
						
							| 78 | 77 7 | eleqtrrdi |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> n e. NN0 ) | 
						
							| 79 |  | dvnp1 |  |-  ( ( CC C_ CC /\ ( ( N + M ) ( S Tayl F ) B ) e. ( CC ^pm CC ) /\ n e. NN0 ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( CC _D ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) ) ) | 
						
							| 80 | 74 75 78 79 | syl3anc |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( CC _D ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) ) ) | 
						
							| 81 | 1 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> S e. { RR , CC } ) | 
						
							| 82 | 62 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 83 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ n e. NN0 ) -> ( ( S Dn F ) ` n ) : dom ( ( S Dn F ) ` n ) --> CC ) | 
						
							| 84 | 81 82 78 83 | syl3anc |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn F ) ` n ) : dom ( ( S Dn F ) ` n ) --> CC ) | 
						
							| 85 |  | dvnbss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ n e. NN0 ) -> dom ( ( S Dn F ) ` n ) C_ dom F ) | 
						
							| 86 | 81 82 78 85 | syl3anc |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> dom ( ( S Dn F ) ` n ) C_ dom F ) | 
						
							| 87 | 2 | fdmd |  |-  ( ph -> dom F = A ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> dom F = A ) | 
						
							| 89 | 86 88 | sseqtrd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> dom ( ( S Dn F ) ` n ) C_ A ) | 
						
							| 90 | 3 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> A C_ S ) | 
						
							| 91 | 89 90 | sstrd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> dom ( ( S Dn F ) ` n ) C_ S ) | 
						
							| 92 | 5 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> N e. NN0 ) | 
						
							| 93 |  | fzofzp1 |  |-  ( n e. ( 0 ..^ M ) -> ( n + 1 ) e. ( 0 ... M ) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( n + 1 ) e. ( 0 ... M ) ) | 
						
							| 95 |  | fznn0sub |  |-  ( ( n + 1 ) e. ( 0 ... M ) -> ( M - ( n + 1 ) ) e. NN0 ) | 
						
							| 96 | 94 95 | syl |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( M - ( n + 1 ) ) e. NN0 ) | 
						
							| 97 | 92 96 | nn0addcld |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + ( M - ( n + 1 ) ) ) e. NN0 ) | 
						
							| 98 | 6 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> B e. dom ( ( S Dn F ) ` ( N + M ) ) ) | 
						
							| 99 |  | elfzofz |  |-  ( n e. ( 0 ..^ M ) -> n e. ( 0 ... M ) ) | 
						
							| 100 | 99 | adantl |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> n e. ( 0 ... M ) ) | 
						
							| 101 |  | fznn0sub |  |-  ( n e. ( 0 ... M ) -> ( M - n ) e. NN0 ) | 
						
							| 102 | 100 101 | syl |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( M - n ) e. NN0 ) | 
						
							| 103 | 92 102 | nn0addcld |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + ( M - n ) ) e. NN0 ) | 
						
							| 104 |  | dvnadd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( n e. NN0 /\ ( N + ( M - n ) ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( N + ( M - n ) ) ) = ( ( S Dn F ) ` ( n + ( N + ( M - n ) ) ) ) ) | 
						
							| 105 | 81 82 78 103 104 | syl22anc |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( N + ( M - n ) ) ) = ( ( S Dn F ) ` ( n + ( N + ( M - n ) ) ) ) ) | 
						
							| 106 | 5 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 107 | 106 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> N e. CC ) | 
						
							| 108 | 96 | nn0cnd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( M - ( n + 1 ) ) e. CC ) | 
						
							| 109 |  | 1cnd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> 1 e. CC ) | 
						
							| 110 | 107 108 109 | addassd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( N + ( M - ( n + 1 ) ) ) + 1 ) = ( N + ( ( M - ( n + 1 ) ) + 1 ) ) ) | 
						
							| 111 | 66 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> M e. CC ) | 
						
							| 112 | 78 | nn0cnd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> n e. CC ) | 
						
							| 113 | 111 112 109 | nppcan2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( M - ( n + 1 ) ) + 1 ) = ( M - n ) ) | 
						
							| 114 | 113 | oveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + ( ( M - ( n + 1 ) ) + 1 ) ) = ( N + ( M - n ) ) ) | 
						
							| 115 | 110 114 | eqtrd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( N + ( M - ( n + 1 ) ) ) + 1 ) = ( N + ( M - n ) ) ) | 
						
							| 116 | 115 | fveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ) = ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( N + ( M - n ) ) ) ) | 
						
							| 117 | 112 111 | pncan3d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( n + ( M - n ) ) = M ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + ( n + ( M - n ) ) ) = ( N + M ) ) | 
						
							| 119 | 111 112 | subcld |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( M - n ) e. CC ) | 
						
							| 120 | 107 112 119 | add12d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + ( n + ( M - n ) ) ) = ( n + ( N + ( M - n ) ) ) ) | 
						
							| 121 | 118 120 | eqtr3d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( N + M ) = ( n + ( N + ( M - n ) ) ) ) | 
						
							| 122 | 121 | fveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn F ) ` ( N + M ) ) = ( ( S Dn F ) ` ( n + ( N + ( M - n ) ) ) ) ) | 
						
							| 123 | 105 116 122 | 3eqtr4d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ) = ( ( S Dn F ) ` ( N + M ) ) ) | 
						
							| 124 | 123 | dmeqd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> dom ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ) = dom ( ( S Dn F ) ` ( N + M ) ) ) | 
						
							| 125 | 98 124 | eleqtrrd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> B e. dom ( ( S Dn ( ( S Dn F ) ` n ) ) ` ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ) ) | 
						
							| 126 | 81 84 91 97 125 | dvtaylp |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( CC _D ( ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( S _D ( ( S Dn F ) ` n ) ) ) B ) ) | 
						
							| 127 | 115 | oveq1d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( CC _D ( ( ( N + ( M - ( n + 1 ) ) ) + 1 ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) = ( CC _D ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) | 
						
							| 129 | 59 | adantr |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> S C_ CC ) | 
						
							| 130 |  | dvnp1 |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ n e. NN0 ) -> ( ( S Dn F ) ` ( n + 1 ) ) = ( S _D ( ( S Dn F ) ` n ) ) ) | 
						
							| 131 | 129 82 78 130 | syl3anc |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( S Dn F ) ` ( n + 1 ) ) = ( S _D ( ( S Dn F ) ` n ) ) ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) = ( S Tayl ( S _D ( ( S Dn F ) ` n ) ) ) ) | 
						
							| 133 | 132 | eqcomd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( S Tayl ( S _D ( ( S Dn F ) ` n ) ) ) = ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) ) | 
						
							| 134 | 133 | oveqd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( S _D ( ( S Dn F ) ` n ) ) ) B ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) | 
						
							| 135 | 126 128 134 | 3eqtr3rd |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) = ( CC _D ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) | 
						
							| 136 | 80 135 | eqeq12d |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) <-> ( CC _D ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) ) = ( CC _D ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) ) ) | 
						
							| 137 | 73 136 | imbitrrid |  |-  ( ( ph /\ n e. ( 0 ..^ M ) ) -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) ) | 
						
							| 138 | 137 | expcom |  |-  ( n e. ( 0 ..^ M ) -> ( ph -> ( ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) ) ) | 
						
							| 139 | 138 | a2d |  |-  ( n e. ( 0 ..^ M ) -> ( ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` n ) = ( ( N + ( M - n ) ) ( S Tayl ( ( S Dn F ) ` n ) ) B ) ) -> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` ( n + 1 ) ) = ( ( N + ( M - ( n + 1 ) ) ) ( S Tayl ( ( S Dn F ) ` ( n + 1 ) ) ) B ) ) ) ) | 
						
							| 140 | 19 28 37 46 72 139 | fzind2 |  |-  ( M e. ( 0 ... M ) -> ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) ) | 
						
							| 141 | 10 140 | mpcom |  |-  ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) = ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) | 
						
							| 142 | 66 | subidd |  |-  ( ph -> ( M - M ) = 0 ) | 
						
							| 143 | 142 | oveq2d |  |-  ( ph -> ( N + ( M - M ) ) = ( N + 0 ) ) | 
						
							| 144 | 106 | addridd |  |-  ( ph -> ( N + 0 ) = N ) | 
						
							| 145 | 143 144 | eqtrd |  |-  ( ph -> ( N + ( M - M ) ) = N ) | 
						
							| 146 | 145 | oveq1d |  |-  ( ph -> ( ( N + ( M - M ) ) ( S Tayl ( ( S Dn F ) ` M ) ) B ) = ( N ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) | 
						
							| 147 | 141 146 | eqtrd |  |-  ( ph -> ( ( CC Dn ( ( N + M ) ( S Tayl F ) B ) ) ` M ) = ( N ( S Tayl ( ( S Dn F ) ` M ) ) B ) ) |