| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvtaylp.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvtaylp.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | dvtaylp.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | dvtaylp.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | dvtaylp.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` ( N + 1 ) ) ) | 
						
							| 6 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 7 | 6 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 8 | 7 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 9 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 10 | 9 | a1i |  |-  ( ph -> CC e. { RR , CC } ) | 
						
							| 11 |  | toponmax |  |-  ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 12 | 7 11 | mp1i |  |-  ( ph -> CC e. ( TopOpen ` CCfld ) ) | 
						
							| 13 |  | fzfid |  |-  ( ph -> ( 0 ... ( N + 1 ) ) e. Fin ) | 
						
							| 14 |  | cnex |  |-  CC e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ph -> CC e. _V ) | 
						
							| 16 |  | elpm2r |  |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 17 | 15 1 2 3 16 | syl22anc |  |-  ( ph -> F e. ( CC ^pm S ) ) | 
						
							| 18 |  | elfznn0 |  |-  ( k e. ( 0 ... ( N + 1 ) ) -> k e. NN0 ) | 
						
							| 19 |  | dvnf |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 20 | 1 17 18 19 | syl2an3an |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) | 
						
							| 21 |  | 0z |  |-  0 e. ZZ | 
						
							| 22 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> ( N + 1 ) e. NN0 ) | 
						
							| 24 | 23 | nn0zd |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 25 |  | fzval2 |  |-  ( ( 0 e. ZZ /\ ( N + 1 ) e. ZZ ) -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) | 
						
							| 26 | 21 24 25 | sylancr |  |-  ( ph -> ( 0 ... ( N + 1 ) ) = ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) | 
						
							| 27 | 26 | eleq2d |  |-  ( ph -> ( k e. ( 0 ... ( N + 1 ) ) <-> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) ) | 
						
							| 28 | 27 | biimpa |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) | 
						
							| 29 | 1 2 3 23 5 | taylplem1 |  |-  ( ( ph /\ k e. ( ( 0 [,] ( N + 1 ) ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 30 | 28 29 | syldan |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 31 | 20 30 | ffvelcdmd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) | 
						
							| 32 | 18 | adantl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. NN0 ) | 
						
							| 33 | 32 | faccld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. NN ) | 
						
							| 34 | 33 | nncnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) e. CC ) | 
						
							| 35 | 33 | nnne0d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ! ` k ) =/= 0 ) | 
						
							| 36 | 31 34 35 | divcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 38 |  | simp3 |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> x e. CC ) | 
						
							| 39 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 40 | 1 39 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 41 | 3 40 | sstrd |  |-  ( ph -> A C_ CC ) | 
						
							| 42 |  | dvnbss |  |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ ( N + 1 ) e. NN0 ) -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) | 
						
							| 43 | 1 17 23 42 | syl3anc |  |-  ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ dom F ) | 
						
							| 44 | 2 43 | fssdmd |  |-  ( ph -> dom ( ( S Dn F ) ` ( N + 1 ) ) C_ A ) | 
						
							| 45 | 44 5 | sseldd |  |-  ( ph -> B e. A ) | 
						
							| 46 | 41 45 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 47 | 46 | 3ad2ant1 |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> B e. CC ) | 
						
							| 48 | 38 47 | subcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( x - B ) e. CC ) | 
						
							| 49 | 18 | 3ad2ant2 |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. NN0 ) | 
						
							| 50 | 48 49 | expcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) | 
						
							| 51 | 37 50 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) e. CC ) | 
						
							| 52 |  | 0cnd |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ k = 0 ) -> 0 e. CC ) | 
						
							| 53 | 49 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> k e. CC ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. CC ) | 
						
							| 55 | 48 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( x - B ) e. CC ) | 
						
							| 56 | 49 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN0 ) | 
						
							| 57 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> -. k = 0 ) | 
						
							| 58 | 57 | neqned |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k =/= 0 ) | 
						
							| 59 |  | elnnne0 |  |-  ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) | 
						
							| 60 | 56 58 59 | sylanbrc |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> k e. NN ) | 
						
							| 61 |  | nnm1nn0 |  |-  ( k e. NN -> ( k - 1 ) e. NN0 ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k - 1 ) e. NN0 ) | 
						
							| 63 | 55 62 | expcld |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) | 
						
							| 64 | 54 63 | mulcld |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) /\ -. k = 0 ) -> ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) e. CC ) | 
						
							| 65 | 52 64 | ifclda |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 66 | 37 65 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) /\ x e. CC ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) | 
						
							| 67 | 9 | a1i |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> CC e. { RR , CC } ) | 
						
							| 68 | 50 | 3expa |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( ( x - B ) ^ k ) e. CC ) | 
						
							| 69 | 65 | 3expa |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 70 | 48 | 3expa |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( x - B ) e. CC ) | 
						
							| 71 |  | 1cnd |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 1 e. CC ) | 
						
							| 72 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> y e. CC ) | 
						
							| 73 | 32 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> k e. NN0 ) | 
						
							| 74 | 72 73 | expcld |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> ( y ^ k ) e. CC ) | 
						
							| 75 |  | c0ex |  |-  0 e. _V | 
						
							| 76 |  | ovex |  |-  ( k x. ( y ^ ( k - 1 ) ) ) e. _V | 
						
							| 77 | 75 76 | ifex |  |-  if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V | 
						
							| 78 | 77 | a1i |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ y e. CC ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) e. _V ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> x e. CC ) | 
						
							| 80 | 67 | dvmptid |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) | 
						
							| 81 | 46 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> B e. CC ) | 
						
							| 82 |  | 0cnd |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> 0 e. CC ) | 
						
							| 83 | 46 | adantr |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> B e. CC ) | 
						
							| 84 | 67 83 | dvmptc |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> B ) ) = ( x e. CC |-> 0 ) ) | 
						
							| 85 | 67 79 71 80 81 82 84 | dvmptsub |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> ( 1 - 0 ) ) ) | 
						
							| 86 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 87 | 86 | mpteq2i |  |-  ( x e. CC |-> ( 1 - 0 ) ) = ( x e. CC |-> 1 ) | 
						
							| 88 | 85 87 | eqtrdi |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( x - B ) ) ) = ( x e. CC |-> 1 ) ) | 
						
							| 89 |  | dvexp2 |  |-  ( k e. NN0 -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 90 | 32 89 | syl |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( y e. CC |-> ( y ^ k ) ) ) = ( y e. CC |-> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 91 |  | oveq1 |  |-  ( y = ( x - B ) -> ( y ^ k ) = ( ( x - B ) ^ k ) ) | 
						
							| 92 |  | oveq1 |  |-  ( y = ( x - B ) -> ( y ^ ( k - 1 ) ) = ( ( x - B ) ^ ( k - 1 ) ) ) | 
						
							| 93 | 92 | oveq2d |  |-  ( y = ( x - B ) -> ( k x. ( y ^ ( k - 1 ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 94 | 93 | ifeq2d |  |-  ( y = ( x - B ) -> if ( k = 0 , 0 , ( k x. ( y ^ ( k - 1 ) ) ) ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) | 
						
							| 95 | 67 67 70 71 74 78 88 90 91 94 | dvmptco |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) ) | 
						
							| 96 | 69 | mulridd |  |-  ( ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) /\ x e. CC ) -> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) = if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) | 
						
							| 97 | 96 | mpteq2dva |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( x e. CC |-> ( if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) x. 1 ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 98 | 95 97 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( x - B ) ^ k ) ) ) = ( x e. CC |-> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 99 | 67 68 69 98 36 | dvmptcmul |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( CC _D ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) | 
						
							| 100 | 8 6 10 12 13 51 66 99 | dvmptfsum |  |-  ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) ) | 
						
							| 101 |  | 1zzd |  |-  ( ( ph /\ x e. CC ) -> 1 e. ZZ ) | 
						
							| 102 |  | 0zd |  |-  ( ( ph /\ x e. CC ) -> 0 e. ZZ ) | 
						
							| 103 | 4 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ x e. CC ) -> N e. ZZ ) | 
						
							| 105 |  | dvfg |  |-  ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) | 
						
							| 106 | 1 105 | syl |  |-  ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) | 
						
							| 107 | 40 2 3 | dvbss |  |-  ( ph -> dom ( S _D F ) C_ A ) | 
						
							| 108 | 107 3 | sstrd |  |-  ( ph -> dom ( S _D F ) C_ S ) | 
						
							| 109 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 110 | 109 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 111 |  | dvnadd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) | 
						
							| 112 | 1 17 110 4 111 | syl22anc |  |-  ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn F ) ` ( 1 + N ) ) ) | 
						
							| 113 |  | dvn1 |  |-  ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) | 
						
							| 114 | 40 17 113 | syl2anc |  |-  ( ph -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( ph -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) | 
						
							| 116 | 115 | fveq1d |  |-  ( ph -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` N ) = ( ( S Dn ( S _D F ) ) ` N ) ) | 
						
							| 117 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 118 | 4 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 119 | 117 118 | addcomd |  |-  ( ph -> ( 1 + N ) = ( N + 1 ) ) | 
						
							| 120 | 119 | fveq2d |  |-  ( ph -> ( ( S Dn F ) ` ( 1 + N ) ) = ( ( S Dn F ) ` ( N + 1 ) ) ) | 
						
							| 121 | 112 116 120 | 3eqtr3d |  |-  ( ph -> ( ( S Dn ( S _D F ) ) ` N ) = ( ( S Dn F ) ` ( N + 1 ) ) ) | 
						
							| 122 | 121 | dmeqd |  |-  ( ph -> dom ( ( S Dn ( S _D F ) ) ` N ) = dom ( ( S Dn F ) ` ( N + 1 ) ) ) | 
						
							| 123 | 5 122 | eleqtrrd |  |-  ( ph -> B e. dom ( ( S Dn ( S _D F ) ) ` N ) ) | 
						
							| 124 | 1 106 108 4 123 | taylplem2 |  |-  ( ( ( ph /\ x e. CC ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) e. CC ) | 
						
							| 125 |  | fveq2 |  |-  ( j = ( k - 1 ) -> ( ( S Dn ( S _D F ) ) ` j ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) | 
						
							| 126 | 125 | fveq1d |  |-  ( j = ( k - 1 ) -> ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) | 
						
							| 127 |  | fveq2 |  |-  ( j = ( k - 1 ) -> ( ! ` j ) = ( ! ` ( k - 1 ) ) ) | 
						
							| 128 | 126 127 | oveq12d |  |-  ( j = ( k - 1 ) -> ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) | 
						
							| 129 |  | oveq2 |  |-  ( j = ( k - 1 ) -> ( ( x - B ) ^ j ) = ( ( x - B ) ^ ( k - 1 ) ) ) | 
						
							| 130 | 128 129 | oveq12d |  |-  ( j = ( k - 1 ) -> ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 131 | 101 102 104 124 130 | fsumshft |  |-  ( ( ph /\ x e. CC ) -> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 132 |  | elfznn |  |-  ( k e. ( 1 ... ( N + 1 ) ) -> k e. NN ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. NN ) | 
						
							| 134 | 133 | nnne0d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k =/= 0 ) | 
						
							| 135 |  | ifnefalse |  |-  ( k =/= 0 -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 136 | 134 135 | syl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) | 
						
							| 138 |  | simpll |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ph ) | 
						
							| 139 |  | fz1ssfz0 |  |-  ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) | 
						
							| 140 | 139 | sseli |  |-  ( k e. ( 1 ... ( N + 1 ) ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 141 | 140 | adantl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 142 | 138 141 36 | syl2anc |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 143 | 133 | nncnd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> k e. CC ) | 
						
							| 144 |  | simplr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> x e. CC ) | 
						
							| 145 | 46 | ad2antrr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> B e. CC ) | 
						
							| 146 | 144 145 | subcld |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( x - B ) e. CC ) | 
						
							| 147 | 133 61 | syl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( k - 1 ) e. NN0 ) | 
						
							| 148 | 146 147 | expcld |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( x - B ) ^ ( k - 1 ) ) e. CC ) | 
						
							| 149 | 142 143 148 | mulassd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) | 
						
							| 150 |  | facp1 |  |-  ( ( k - 1 ) e. NN0 -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) | 
						
							| 151 | 147 150 | syl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) ) | 
						
							| 152 |  | 1cnd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) | 
						
							| 153 | 143 152 | npcand |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( k - 1 ) + 1 ) = k ) | 
						
							| 154 | 153 | fveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( ( k - 1 ) + 1 ) ) = ( ! ` k ) ) | 
						
							| 155 | 153 | oveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ! ` ( k - 1 ) ) x. ( ( k - 1 ) + 1 ) ) = ( ( ! ` ( k - 1 ) ) x. k ) ) | 
						
							| 156 | 151 154 155 | 3eqtr3d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` k ) = ( ( ! ` ( k - 1 ) ) x. k ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) ) | 
						
							| 158 | 32 | nn0cnd |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> k e. CC ) | 
						
							| 159 | 31 158 34 35 | div23d |  |-  ( ( ph /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) | 
						
							| 160 | 138 141 159 | syl2anc |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ! ` k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) ) | 
						
							| 161 | 138 141 31 | syl2anc |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) | 
						
							| 162 | 147 | faccld |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. NN ) | 
						
							| 163 | 162 | nncnd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) e. CC ) | 
						
							| 164 | 162 | nnne0d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ! ` ( k - 1 ) ) =/= 0 ) | 
						
							| 165 | 161 163 143 164 134 | divcan5rd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) ) | 
						
							| 166 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> S e. { RR , CC } ) | 
						
							| 167 | 17 | ad2antrr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> F e. ( CC ^pm S ) ) | 
						
							| 168 | 109 | a1i |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> 1 e. NN0 ) | 
						
							| 169 |  | dvnadd |  |-  ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( 1 e. NN0 /\ ( k - 1 ) e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) | 
						
							| 170 | 166 167 168 147 169 | syl22anc |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) ) | 
						
							| 171 | 114 | ad2antrr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` 1 ) = ( S _D F ) ) | 
						
							| 172 | 171 | oveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( S Dn ( ( S Dn F ) ` 1 ) ) = ( S Dn ( S _D F ) ) ) | 
						
							| 173 | 172 | fveq1d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn ( ( S Dn F ) ` 1 ) ) ` ( k - 1 ) ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) | 
						
							| 174 | 152 143 | pncan3d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( 1 + ( k - 1 ) ) = k ) | 
						
							| 175 | 174 | fveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` ( 1 + ( k - 1 ) ) ) = ( ( S Dn F ) ` k ) ) | 
						
							| 176 | 170 173 175 | 3eqtr3rd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( S Dn F ) ` k ) = ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ) | 
						
							| 177 | 176 | fveq1d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( S Dn F ) ` k ) ` B ) = ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) ) | 
						
							| 178 | 177 | oveq1d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` ( k - 1 ) ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) | 
						
							| 179 | 165 178 | eqtrd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) x. k ) / ( ( ! ` ( k - 1 ) ) x. k ) ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) | 
						
							| 180 | 157 160 179 | 3eqtr3d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) = ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) ) | 
						
							| 181 | 180 | oveq1d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. k ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 182 | 137 149 181 | 3eqtr2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 183 | 182 | sumeq2dv |  |-  ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 184 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 185 | 184 | oveq1i |  |-  ( ( 0 + 1 ) ... ( N + 1 ) ) = ( 1 ... ( N + 1 ) ) | 
						
							| 186 | 185 | sumeq1i |  |-  sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) | 
						
							| 187 | 183 186 | eqtr4di |  |-  ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N + 1 ) ) ( ( ( ( ( S Dn ( S _D F ) ) ` ( k - 1 ) ) ` B ) / ( ! ` ( k - 1 ) ) ) x. ( ( x - B ) ^ ( k - 1 ) ) ) ) | 
						
							| 188 | 139 | a1i |  |-  ( ( ph /\ x e. CC ) -> ( 1 ... ( N + 1 ) ) C_ ( 0 ... ( N + 1 ) ) ) | 
						
							| 189 | 69 | an32s |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 190 | 140 189 | sylan2 |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) e. CC ) | 
						
							| 191 | 142 190 | mulcld |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) e. CC ) | 
						
							| 192 |  | eldif |  |-  ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) <-> ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 193 | 59 | biimpri |  |-  ( ( k e. NN0 /\ k =/= 0 ) -> k e. NN ) | 
						
							| 194 | 18 193 | sylan |  |-  ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. NN ) | 
						
							| 195 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 196 | 194 195 | eleqtrdi |  |-  ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( ZZ>= ` 1 ) ) | 
						
							| 197 |  | elfzuz3 |  |-  ( k e. ( 0 ... ( N + 1 ) ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) | 
						
							| 198 | 197 | adantr |  |-  ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> ( N + 1 ) e. ( ZZ>= ` k ) ) | 
						
							| 199 |  | elfzuzb |  |-  ( k e. ( 1 ... ( N + 1 ) ) <-> ( k e. ( ZZ>= ` 1 ) /\ ( N + 1 ) e. ( ZZ>= ` k ) ) ) | 
						
							| 200 | 196 198 199 | sylanbrc |  |-  ( ( k e. ( 0 ... ( N + 1 ) ) /\ k =/= 0 ) -> k e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 201 | 200 | ex |  |-  ( k e. ( 0 ... ( N + 1 ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 202 | 201 | adantl |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( k =/= 0 -> k e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 203 | 202 | necon1bd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( -. k e. ( 1 ... ( N + 1 ) ) -> k = 0 ) ) | 
						
							| 204 | 203 | impr |  |-  ( ( ( ph /\ x e. CC ) /\ ( k e. ( 0 ... ( N + 1 ) ) /\ -. k e. ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) | 
						
							| 205 | 192 204 | sylan2b |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> k = 0 ) | 
						
							| 206 | 205 | iftrued |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) = 0 ) | 
						
							| 207 | 206 | oveq2d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) ) | 
						
							| 208 |  | eldifi |  |-  ( k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) -> k e. ( 0 ... ( N + 1 ) ) ) | 
						
							| 209 | 36 | adantlr |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N + 1 ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 210 | 208 209 | sylan2 |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) | 
						
							| 211 | 210 | mul01d |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. 0 ) = 0 ) | 
						
							| 212 | 207 211 | eqtrd |  |-  ( ( ( ph /\ x e. CC ) /\ k e. ( ( 0 ... ( N + 1 ) ) \ ( 1 ... ( N + 1 ) ) ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = 0 ) | 
						
							| 213 |  | fzfid |  |-  ( ( ph /\ x e. CC ) -> ( 0 ... ( N + 1 ) ) e. Fin ) | 
						
							| 214 | 188 191 212 213 | fsumss |  |-  ( ( ph /\ x e. CC ) -> sum_ k e. ( 1 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 215 | 131 187 214 | 3eqtr2rd |  |-  ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) = sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) | 
						
							| 216 | 215 | mpteq2dva |  |-  ( ph -> ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. if ( k = 0 , 0 , ( k x. ( ( x - B ) ^ ( k - 1 ) ) ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) | 
						
							| 217 | 100 216 | eqtrd |  |-  ( ph -> ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) | 
						
							| 218 |  | eqid |  |-  ( ( N + 1 ) ( S Tayl F ) B ) = ( ( N + 1 ) ( S Tayl F ) B ) | 
						
							| 219 | 1 2 3 23 5 218 | taylpfval |  |-  ( ph -> ( ( N + 1 ) ( S Tayl F ) B ) = ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) | 
						
							| 220 | 219 | oveq2d |  |-  ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( CC _D ( x e. CC |-> sum_ k e. ( 0 ... ( N + 1 ) ) ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) | 
						
							| 221 |  | eqid |  |-  ( N ( S Tayl ( S _D F ) ) B ) = ( N ( S Tayl ( S _D F ) ) B ) | 
						
							| 222 | 1 106 108 4 123 221 | taylpfval |  |-  ( ph -> ( N ( S Tayl ( S _D F ) ) B ) = ( x e. CC |-> sum_ j e. ( 0 ... N ) ( ( ( ( ( S Dn ( S _D F ) ) ` j ) ` B ) / ( ! ` j ) ) x. ( ( x - B ) ^ j ) ) ) ) | 
						
							| 223 | 217 220 222 | 3eqtr4d |  |-  ( ph -> ( CC _D ( ( N + 1 ) ( S Tayl F ) B ) ) = ( N ( S Tayl ( S _D F ) ) B ) ) |