| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eltskg |
⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |
| 2 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 |
| 3 |
|
pweq |
⊢ ( 𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤 ) |
| 4 |
3
|
sseq1d |
⊢ ( 𝑧 = 𝑤 → ( 𝒫 𝑧 ⊆ 𝑇 ↔ 𝒫 𝑤 ⊆ 𝑇 ) ) |
| 5 |
4
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑤 ∈ 𝑇 ) → 𝒫 𝑤 ⊆ 𝑇 ) |
| 6 |
5
|
adantlr |
⊢ ( ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ 𝑤 ∈ 𝑇 ) → 𝒫 𝑤 ⊆ 𝑇 ) |
| 7 |
|
vpwex |
⊢ 𝒫 𝑧 ∈ V |
| 8 |
7
|
elpw |
⊢ ( 𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧 ⊆ 𝑤 ) |
| 9 |
|
ssel |
⊢ ( 𝒫 𝑤 ⊆ 𝑇 → ( 𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 10 |
8 9
|
biimtrrid |
⊢ ( 𝒫 𝑤 ⊆ 𝑇 → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 11 |
6 10
|
syl |
⊢ ( ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ 𝑤 ∈ 𝑇 ) → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 12 |
11
|
rexlimdva |
⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 13 |
2 12
|
ralimdaa |
⊢ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 → ( ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) |
| 14 |
13
|
imdistani |
⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) |
| 15 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 16 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ↔ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) |
| 17 |
14 15 16
|
3imtr4i |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ) |
| 18 |
|
ssid |
⊢ 𝒫 𝑧 ⊆ 𝒫 𝑧 |
| 19 |
|
sseq2 |
⊢ ( 𝑤 = 𝒫 𝑧 → ( 𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) ) |
| 20 |
19
|
rspcev |
⊢ ( ( 𝒫 𝑧 ∈ 𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) → ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) |
| 21 |
18 20
|
mpan2 |
⊢ ( 𝒫 𝑧 ∈ 𝑇 → ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) |
| 22 |
21
|
anim2i |
⊢ ( ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) → ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 23 |
22
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) → ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 24 |
17 23
|
impbii |
⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ) |
| 25 |
24
|
anbi1i |
⊢ ( ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
| 26 |
1 25
|
bitrdi |
⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |