Metamath Proof Explorer


Theorem eusv2nf

Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypothesis eusv2.1 𝐴 ∈ V
Assertion eusv2nf ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 eusv2.1 𝐴 ∈ V
2 nfeu1 𝑦 ∃! 𝑦𝑥 𝑦 = 𝐴
3 nfe1 𝑥𝑥 𝑦 = 𝐴
4 3 nfeuw 𝑥 ∃! 𝑦𝑥 𝑦 = 𝐴
5 1 isseti 𝑦 𝑦 = 𝐴
6 19.8a ( 𝑦 = 𝐴 → ∃ 𝑥 𝑦 = 𝐴 )
7 6 ancri ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) )
8 5 7 eximii 𝑦 ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 )
9 eupick ( ( ∃! 𝑦𝑥 𝑦 = 𝐴 ∧ ∃ 𝑦 ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) ) → ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) )
10 8 9 mpan2 ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) )
11 4 10 alrimi ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) )
12 nf6 ( Ⅎ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴𝑦 = 𝐴 ) )
13 11 12 sylibr ( ∃! 𝑦𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 )
14 2 13 alrimi ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∀ 𝑦𝑥 𝑦 = 𝐴 )
15 dfnfc2 ( ∀ 𝑥 𝐴 ∈ V → ( 𝑥 𝐴 ↔ ∀ 𝑦𝑥 𝑦 = 𝐴 ) )
16 15 1 mpg ( 𝑥 𝐴 ↔ ∀ 𝑦𝑥 𝑦 = 𝐴 )
17 14 16 sylibr ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
18 eusvnfb ( ∃! 𝑦𝑥 𝑦 = 𝐴 ↔ ( 𝑥 𝐴𝐴 ∈ V ) )
19 1 18 mpbiran2 ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
20 eusv2i ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∃! 𝑦𝑥 𝑦 = 𝐴 )
21 19 20 sylbir ( 𝑥 𝐴 → ∃! 𝑦𝑥 𝑦 = 𝐴 )
22 17 21 impbii ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )