Step |
Hyp |
Ref |
Expression |
1 |
|
explt1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
explt1d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
explt1d.0 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
|
explt1d.1 |
⊢ ( 𝜑 → 𝐴 < 1 ) |
5 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) |
6 |
5
|
breq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ↔ ( 0 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ 𝐴 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
10 |
7 8 9
|
ne0gt0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 < 𝐴 ) |
11 |
7 10
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ+ ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
13 |
|
1rp |
⊢ 1 ∈ ℝ+ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 1 ∈ ℝ+ ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝑁 ∈ ℕ ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 < 1 ) |
17 |
12 14 15 16
|
ltexp1dd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → ( 𝐴 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ) |
18 |
11 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ) |
19 |
|
0lt1 |
⊢ 0 < 1 |
20 |
19
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
21 |
2
|
0expd |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) = 0 ) |
22 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
23 |
|
1exp |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 1 ↑ 𝑁 ) = 1 ) |
25 |
20 21 24
|
3brtr4d |
⊢ ( 𝜑 → ( 0 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ) |
26 |
6 18 25
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) < ( 1 ↑ 𝑁 ) ) |
27 |
26 24
|
breqtrd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) < 1 ) |