| Step |
Hyp |
Ref |
Expression |
| 1 |
|
explt1d.a |
|- ( ph -> A e. RR ) |
| 2 |
|
explt1d.n |
|- ( ph -> N e. NN ) |
| 3 |
|
explt1d.0 |
|- ( ph -> 0 <_ A ) |
| 4 |
|
explt1d.1 |
|- ( ph -> A < 1 ) |
| 5 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 6 |
5
|
breq1d |
|- ( A = 0 -> ( ( A ^ N ) < ( 1 ^ N ) <-> ( 0 ^ N ) < ( 1 ^ N ) ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> A e. RR ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> 0 <_ A ) |
| 9 |
|
simpr |
|- ( ( ph /\ A =/= 0 ) -> A =/= 0 ) |
| 10 |
7 8 9
|
ne0gt0d |
|- ( ( ph /\ A =/= 0 ) -> 0 < A ) |
| 11 |
7 10
|
elrpd |
|- ( ( ph /\ A =/= 0 ) -> A e. RR+ ) |
| 12 |
|
simpr |
|- ( ( ph /\ A e. RR+ ) -> A e. RR+ ) |
| 13 |
|
1rp |
|- 1 e. RR+ |
| 14 |
13
|
a1i |
|- ( ( ph /\ A e. RR+ ) -> 1 e. RR+ ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ A e. RR+ ) -> N e. NN ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ A e. RR+ ) -> A < 1 ) |
| 17 |
12 14 15 16
|
ltexp1dd |
|- ( ( ph /\ A e. RR+ ) -> ( A ^ N ) < ( 1 ^ N ) ) |
| 18 |
11 17
|
syldan |
|- ( ( ph /\ A =/= 0 ) -> ( A ^ N ) < ( 1 ^ N ) ) |
| 19 |
|
0lt1 |
|- 0 < 1 |
| 20 |
19
|
a1i |
|- ( ph -> 0 < 1 ) |
| 21 |
2
|
0expd |
|- ( ph -> ( 0 ^ N ) = 0 ) |
| 22 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 23 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( 1 ^ N ) = 1 ) |
| 25 |
20 21 24
|
3brtr4d |
|- ( ph -> ( 0 ^ N ) < ( 1 ^ N ) ) |
| 26 |
6 18 25
|
pm2.61ne |
|- ( ph -> ( A ^ N ) < ( 1 ^ N ) ) |
| 27 |
26 24
|
breqtrd |
|- ( ph -> ( A ^ N ) < 1 ) |