Metamath Proof Explorer


Theorem explt1d

Description: A nonnegative real number less than one raised to a positive integer is less than one. (Contributed by SN, 3-Jul-2025)

Ref Expression
Hypotheses explt1d.a φ A
explt1d.n φ N
explt1d.0 φ 0 A
explt1d.1 φ A < 1
Assertion explt1d φ A N < 1

Proof

Step Hyp Ref Expression
1 explt1d.a φ A
2 explt1d.n φ N
3 explt1d.0 φ 0 A
4 explt1d.1 φ A < 1
5 oveq1 A = 0 A N = 0 N
6 5 breq1d A = 0 A N < 1 N 0 N < 1 N
7 1 adantr φ A 0 A
8 3 adantr φ A 0 0 A
9 simpr φ A 0 A 0
10 7 8 9 ne0gt0d φ A 0 0 < A
11 7 10 elrpd φ A 0 A +
12 simpr φ A + A +
13 1rp 1 +
14 13 a1i φ A + 1 +
15 2 adantr φ A + N
16 4 adantr φ A + A < 1
17 12 14 15 16 ltexp1dd φ A + A N < 1 N
18 11 17 syldan φ A 0 A N < 1 N
19 0lt1 0 < 1
20 19 a1i φ 0 < 1
21 2 0expd φ 0 N = 0
22 2 nnzd φ N
23 1exp N 1 N = 1
24 22 23 syl φ 1 N = 1
25 20 21 24 3brtr4d φ 0 N < 1 N
26 6 18 25 pm2.61ne φ A N < 1 N
27 26 24 breqtrd φ A N < 1