| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1cocnv1 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 2 |
|
coeq2 |
⊢ ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐺 ) ) |
| 3 |
2
|
eqeq1d |
⊢ ( 𝐹 = 𝐺 → ( ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 4 |
1 3
|
syl5ibcom |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 → ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |
| 6 |
|
f1fn |
⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 → 𝐺 Fn 𝐴 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐺 Fn 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐺 Fn 𝐴 ) |
| 9 |
|
f1fn |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 12 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 13 |
|
resieq |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( I ↾ 𝐴 ) 𝑥 ↔ 𝑥 = 𝑥 ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 15 |
14
|
anidms |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( I ↾ 𝐴 ) 𝑥 ) |
| 17 |
|
breq |
⊢ ( ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ 𝑥 ( I ↾ 𝐴 ) 𝑥 ) ) |
| 18 |
17
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ 𝑥 ( I ↾ 𝐴 ) 𝑥 ) ) |
| 19 |
16 18
|
mpbird |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ) |
| 20 |
|
fnfun |
⊢ ( 𝐺 Fn 𝐴 → Fun 𝐺 ) |
| 21 |
7 20
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → Fun 𝐺 ) |
| 22 |
7
|
fndmd |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → dom 𝐺 = 𝐴 ) |
| 23 |
22
|
eleq2d |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ dom 𝐺 ↔ 𝑥 ∈ 𝐴 ) ) |
| 24 |
23
|
biimpar |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐺 ) |
| 25 |
|
funopfvb |
⊢ ( ( Fun 𝐺 ∧ 𝑥 ∈ dom 𝐺 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) ) |
| 26 |
21 24 25
|
syl2an2r |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) ) |
| 27 |
26
|
bicomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ↔ ( 𝐺 ‘ 𝑥 ) = 𝑦 ) ) |
| 28 |
|
df-br |
⊢ ( 𝑥 𝐺 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐺 ) |
| 29 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) = 𝑦 ) |
| 30 |
27 28 29
|
3bitr4g |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐺 𝑦 ↔ 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 31 |
30
|
biimpd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐺 𝑦 → 𝑦 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 32 |
|
df-br |
⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 33 |
|
fnfun |
⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) |
| 34 |
10 33
|
syl |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → Fun 𝐹 ) |
| 35 |
10
|
fndmd |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → dom 𝐹 = 𝐴 ) |
| 36 |
35
|
eleq2d |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
| 37 |
36
|
biimpar |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝐹 ) |
| 38 |
|
funopfvb |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 39 |
34 37 38
|
syl2an2r |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 40 |
32 39
|
bitr4id |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 41 |
|
vex |
⊢ 𝑦 ∈ V |
| 42 |
|
vex |
⊢ 𝑥 ∈ V |
| 43 |
41 42
|
brcnv |
⊢ ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) |
| 44 |
|
eqcom |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
| 45 |
40 43 44
|
3bitr4g |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 46 |
45
|
biimpd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝐹 𝑥 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 |
31 46
|
anim12d |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) → ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 48 |
47
|
eximdv |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) → ∃ 𝑦 ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 49 |
42 42
|
brco |
⊢ ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 ↔ ∃ 𝑦 ( 𝑥 𝐺 𝑦 ∧ 𝑦 ◡ 𝐹 𝑥 ) ) |
| 50 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
| 51 |
50
|
eqvinc |
⊢ ( ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 = ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 52 |
48 49 51
|
3imtr4g |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 |
52
|
adantlr |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ( ◡ 𝐹 ∘ 𝐺 ) 𝑥 → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 |
19 53
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 55 |
8 11 54
|
eqfnfvd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐺 = 𝐹 ) |
| 56 |
55
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) ∧ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) → 𝐹 = 𝐺 ) |
| 57 |
56
|
ex |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) → 𝐹 = 𝐺 ) ) |
| 58 |
5 57
|
impbid |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐺 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 = 𝐺 ↔ ( ◡ 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐴 ) ) ) |