Metamath Proof Explorer


Theorem f1eqcocnv

Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015) (Proof shortened by Wolf Lammen, 29-May-2024)

Ref Expression
Assertion f1eqcocnv F : A 1-1 B G : A 1-1 B F = G F -1 G = I A

Proof

Step Hyp Ref Expression
1 f1cocnv1 F : A 1-1 B F -1 F = I A
2 coeq2 F = G F -1 F = F -1 G
3 2 eqeq1d F = G F -1 F = I A F -1 G = I A
4 1 3 syl5ibcom F : A 1-1 B F = G F -1 G = I A
5 4 adantr F : A 1-1 B G : A 1-1 B F = G F -1 G = I A
6 f1fn G : A 1-1 B G Fn A
7 6 adantl F : A 1-1 B G : A 1-1 B G Fn A
8 7 adantr F : A 1-1 B G : A 1-1 B F -1 G = I A G Fn A
9 f1fn F : A 1-1 B F Fn A
10 9 adantr F : A 1-1 B G : A 1-1 B F Fn A
11 10 adantr F : A 1-1 B G : A 1-1 B F -1 G = I A F Fn A
12 equid x = x
13 resieq x A x A x I A x x = x
14 12 13 mpbiri x A x A x I A x
15 14 anidms x A x I A x
16 15 adantl F : A 1-1 B G : A 1-1 B F -1 G = I A x A x I A x
17 breq F -1 G = I A x F -1 G x x I A x
18 17 ad2antlr F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x x I A x
19 16 18 mpbird F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x
20 fnfun G Fn A Fun G
21 7 20 syl F : A 1-1 B G : A 1-1 B Fun G
22 7 fndmd F : A 1-1 B G : A 1-1 B dom G = A
23 22 eleq2d F : A 1-1 B G : A 1-1 B x dom G x A
24 23 biimpar F : A 1-1 B G : A 1-1 B x A x dom G
25 funopfvb Fun G x dom G G x = y x y G
26 21 24 25 syl2an2r F : A 1-1 B G : A 1-1 B x A G x = y x y G
27 26 bicomd F : A 1-1 B G : A 1-1 B x A x y G G x = y
28 df-br x G y x y G
29 eqcom y = G x G x = y
30 27 28 29 3bitr4g F : A 1-1 B G : A 1-1 B x A x G y y = G x
31 30 biimpd F : A 1-1 B G : A 1-1 B x A x G y y = G x
32 df-br x F y x y F
33 fnfun F Fn A Fun F
34 10 33 syl F : A 1-1 B G : A 1-1 B Fun F
35 10 fndmd F : A 1-1 B G : A 1-1 B dom F = A
36 35 eleq2d F : A 1-1 B G : A 1-1 B x dom F x A
37 36 biimpar F : A 1-1 B G : A 1-1 B x A x dom F
38 funopfvb Fun F x dom F F x = y x y F
39 34 37 38 syl2an2r F : A 1-1 B G : A 1-1 B x A F x = y x y F
40 32 39 bitr4id F : A 1-1 B G : A 1-1 B x A x F y F x = y
41 vex y V
42 vex x V
43 41 42 brcnv y F -1 x x F y
44 eqcom y = F x F x = y
45 40 43 44 3bitr4g F : A 1-1 B G : A 1-1 B x A y F -1 x y = F x
46 45 biimpd F : A 1-1 B G : A 1-1 B x A y F -1 x y = F x
47 31 46 anim12d F : A 1-1 B G : A 1-1 B x A x G y y F -1 x y = G x y = F x
48 47 eximdv F : A 1-1 B G : A 1-1 B x A y x G y y F -1 x y y = G x y = F x
49 42 42 brco x F -1 G x y x G y y F -1 x
50 fvex G x V
51 50 eqvinc G x = F x y y = G x y = F x
52 48 49 51 3imtr4g F : A 1-1 B G : A 1-1 B x A x F -1 G x G x = F x
53 52 adantlr F : A 1-1 B G : A 1-1 B F -1 G = I A x A x F -1 G x G x = F x
54 19 53 mpd F : A 1-1 B G : A 1-1 B F -1 G = I A x A G x = F x
55 8 11 54 eqfnfvd F : A 1-1 B G : A 1-1 B F -1 G = I A G = F
56 55 eqcomd F : A 1-1 B G : A 1-1 B F -1 G = I A F = G
57 56 ex F : A 1-1 B G : A 1-1 B F -1 G = I A F = G
58 5 57 impbid F : A 1-1 B G : A 1-1 B F = G F -1 G = I A