| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1cocnv1 |
|- ( F : A -1-1-> B -> ( `' F o. F ) = ( _I |` A ) ) |
| 2 |
|
coeq2 |
|- ( F = G -> ( `' F o. F ) = ( `' F o. G ) ) |
| 3 |
2
|
eqeq1d |
|- ( F = G -> ( ( `' F o. F ) = ( _I |` A ) <-> ( `' F o. G ) = ( _I |` A ) ) ) |
| 4 |
1 3
|
syl5ibcom |
|- ( F : A -1-1-> B -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) |
| 5 |
4
|
adantr |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G -> ( `' F o. G ) = ( _I |` A ) ) ) |
| 6 |
|
f1fn |
|- ( G : A -1-1-> B -> G Fn A ) |
| 7 |
6
|
adantl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> G Fn A ) |
| 8 |
7
|
adantr |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G Fn A ) |
| 9 |
|
f1fn |
|- ( F : A -1-1-> B -> F Fn A ) |
| 10 |
9
|
adantr |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> F Fn A ) |
| 11 |
10
|
adantr |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F Fn A ) |
| 12 |
|
equid |
|- x = x |
| 13 |
|
resieq |
|- ( ( x e. A /\ x e. A ) -> ( x ( _I |` A ) x <-> x = x ) ) |
| 14 |
12 13
|
mpbiri |
|- ( ( x e. A /\ x e. A ) -> x ( _I |` A ) x ) |
| 15 |
14
|
anidms |
|- ( x e. A -> x ( _I |` A ) x ) |
| 16 |
15
|
adantl |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( _I |` A ) x ) |
| 17 |
|
breq |
|- ( ( `' F o. G ) = ( _I |` A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) |
| 18 |
17
|
ad2antlr |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x <-> x ( _I |` A ) x ) ) |
| 19 |
16 18
|
mpbird |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> x ( `' F o. G ) x ) |
| 20 |
|
fnfun |
|- ( G Fn A -> Fun G ) |
| 21 |
7 20
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun G ) |
| 22 |
7
|
fndmd |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom G = A ) |
| 23 |
22
|
eleq2d |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom G <-> x e. A ) ) |
| 24 |
23
|
biimpar |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom G ) |
| 25 |
|
funopfvb |
|- ( ( Fun G /\ x e. dom G ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) |
| 26 |
21 24 25
|
syl2an2r |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( G ` x ) = y <-> <. x , y >. e. G ) ) |
| 27 |
26
|
bicomd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( <. x , y >. e. G <-> ( G ` x ) = y ) ) |
| 28 |
|
df-br |
|- ( x G y <-> <. x , y >. e. G ) |
| 29 |
|
eqcom |
|- ( y = ( G ` x ) <-> ( G ` x ) = y ) |
| 30 |
27 28 29
|
3bitr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y <-> y = ( G ` x ) ) ) |
| 31 |
30
|
biimpd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x G y -> y = ( G ` x ) ) ) |
| 32 |
|
df-br |
|- ( x F y <-> <. x , y >. e. F ) |
| 33 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 34 |
10 33
|
syl |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> Fun F ) |
| 35 |
10
|
fndmd |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> dom F = A ) |
| 36 |
35
|
eleq2d |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( x e. dom F <-> x e. A ) ) |
| 37 |
36
|
biimpar |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> x e. dom F ) |
| 38 |
|
funopfvb |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
| 39 |
34 37 38
|
syl2an2r |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = y <-> <. x , y >. e. F ) ) |
| 40 |
32 39
|
bitr4id |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x F y <-> ( F ` x ) = y ) ) |
| 41 |
|
vex |
|- y e. _V |
| 42 |
|
vex |
|- x e. _V |
| 43 |
41 42
|
brcnv |
|- ( y `' F x <-> x F y ) |
| 44 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
| 45 |
40 43 44
|
3bitr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x <-> y = ( F ` x ) ) ) |
| 46 |
45
|
biimpd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( y `' F x -> y = ( F ` x ) ) ) |
| 47 |
31 46
|
anim12d |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( ( x G y /\ y `' F x ) -> ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) |
| 48 |
47
|
eximdv |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( E. y ( x G y /\ y `' F x ) -> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) ) |
| 49 |
42 42
|
brco |
|- ( x ( `' F o. G ) x <-> E. y ( x G y /\ y `' F x ) ) |
| 50 |
|
fvex |
|- ( G ` x ) e. _V |
| 51 |
50
|
eqvinc |
|- ( ( G ` x ) = ( F ` x ) <-> E. y ( y = ( G ` x ) /\ y = ( F ` x ) ) ) |
| 52 |
48 49 51
|
3imtr4g |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) |
| 53 |
52
|
adantlr |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( x ( `' F o. G ) x -> ( G ` x ) = ( F ` x ) ) ) |
| 54 |
19 53
|
mpd |
|- ( ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) /\ x e. A ) -> ( G ` x ) = ( F ` x ) ) |
| 55 |
8 11 54
|
eqfnfvd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> G = F ) |
| 56 |
55
|
eqcomd |
|- ( ( ( F : A -1-1-> B /\ G : A -1-1-> B ) /\ ( `' F o. G ) = ( _I |` A ) ) -> F = G ) |
| 57 |
56
|
ex |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( ( `' F o. G ) = ( _I |` A ) -> F = G ) ) |
| 58 |
5 57
|
impbid |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |