| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 |  | simpllr | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑎  ≠  𝑥 ) | 
						
							| 7 | 6 | anim1i | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ≠  𝑦 )  →  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) ) | 
						
							| 8 | 1 2 3 4 5 | frgrwopreglem4 | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 9 |  | preq1 | ⊢ ( 𝑧  =  𝑎  →  { 𝑧 ,  𝑏 }  =  { 𝑎 ,  𝑏 } ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑧  =  𝑎  →  ( { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑧  =  𝑎  →  ( ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 12 | 11 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 13 |  | rsp2 | ⊢ ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 15 | 14 | ad2ant2r | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 16 | 12 15 | biimtrid | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸 )  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 18 |  | prcom | ⊢ { 𝑏 ,  𝑥 }  =  { 𝑥 ,  𝑏 } | 
						
							| 19 |  | preq1 | ⊢ ( 𝑧  =  𝑥  →  { 𝑧 ,  𝑏 }  =  { 𝑥 ,  𝑏 } ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑧  =  𝑥  →  ( { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  ∀ 𝑏  ∈  𝐵 { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 22 | 21 | cbvralvw | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑥 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 23 |  | rsp2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑥 ,  𝑏 }  ∈  𝐸  →  ( ( 𝑥  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 24 | 22 23 | sylbi | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  ( ( 𝑥  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 26 | 25 | ad2ant2lr | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑥 ,  𝑏 }  ∈  𝐸 ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸 )  →  { 𝑥 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 28 | 18 27 | eqeltrid | ⊢ ( ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸 )  →  { 𝑏 ,  𝑥 }  ∈  𝐸 ) | 
						
							| 29 | 17 28 | jca | ⊢ ( ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸 )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) | 
						
							| 30 | 29 | expcom | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) ) | 
						
							| 31 | 8 30 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) ) | 
						
							| 33 | 32 | impl | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ≠  𝑦 )  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 ) ) | 
						
							| 35 |  | preq2 | ⊢ ( 𝑏  =  𝑦  →  { 𝑥 ,  𝑏 }  =  { 𝑥 ,  𝑦 } ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑏  =  𝑦  →  ( { 𝑥 ,  𝑏 }  ∈  𝐸  ↔  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 37 | 20 36 | rspc2v | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 38 | 37 | ad2ant2l | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ∧  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  { 𝑥 ,  𝑦 }  ∈  𝐸 ) | 
						
							| 40 |  | prcom | ⊢ { 𝑦 ,  𝑎 }  =  { 𝑎 ,  𝑦 } | 
						
							| 41 |  | preq2 | ⊢ ( 𝑏  =  𝑦  →  { 𝑎 ,  𝑏 }  =  { 𝑎 ,  𝑦 } ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( 𝑏  =  𝑦  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ↔  { 𝑎 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 43 | 10 42 | rspc2v | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑎 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 44 | 43 | ad2ant2rl | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  { 𝑎 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 45 | 44 | impcom | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ∧  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  { 𝑎 ,  𝑦 }  ∈  𝐸 ) | 
						
							| 46 | 40 45 | eqeltrid | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ∧  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  { 𝑦 ,  𝑎 }  ∈  𝐸 ) | 
						
							| 47 | 39 46 | jca | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  ∧  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ∀ 𝑧  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑧 ,  𝑏 }  ∈  𝐸  →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) | 
						
							| 49 | 8 48 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  →  ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) | 
						
							| 51 | 50 | impl | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ≠  𝑦 )  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) | 
						
							| 53 | 7 34 52 | 3jca | ⊢ ( ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑏  ≠  𝑦 )  →  ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑏  ≠  𝑦  →  ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 55 | 54 | reximdvva | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 56 | 55 | exp31 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑎  ≠  𝑥  →  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 57 | 56 | com24 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦  →  ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑎  ≠  𝑥  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) ) ) | 
						
							| 58 | 57 | imp31 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝑎  ≠  𝑥  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 59 | 58 | reximdvva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 60 | 59 | ex | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 61 | 60 | com13 | ⊢ ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  ∧  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 )  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 63 | 1 2 3 4 | frgrwopreglem1 | ⊢ ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) | 
						
							| 64 |  | hashgt12el | ⊢ ( ( 𝐴  ∈  V  ∧  1  <  ( ♯ ‘ 𝐴 ) )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥 ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝐴  ∈  V  →  ( 1  <  ( ♯ ‘ 𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥 ) ) | 
						
							| 66 |  | hashgt12el | ⊢ ( ( 𝐵  ∈  V  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 ) | 
						
							| 67 | 66 | ex | ⊢ ( 𝐵  ∈  V  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 ) ) | 
						
							| 68 | 65 67 | im2anan9 | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ( 1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  ∧  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 ) ) ) | 
						
							| 69 | 63 68 | ax-mp | ⊢ ( ( 1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 𝑎  ≠  𝑥  ∧  ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 𝑏  ≠  𝑦 ) ) | 
						
							| 70 | 62 69 | syl11 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) ) | 
						
							| 71 | 70 | 3impib | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑥 }  ∈  𝐸 )  ∧  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑎 }  ∈  𝐸 ) ) ) |