| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzfi | 
							⊢ ( 𝑀 ... 𝑁 )  ∈  Fin  | 
						
						
							| 2 | 
							
								
							 | 
							fimaxre3 | 
							⊢ ( ( ( 𝑀 ... 𝑁 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  | 
						
						
							| 4 | 
							
								
							 | 
							r19.26 | 
							⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  ↔  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  +  1 )  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							ltp1 | 
							⊢ ( 𝑦  ∈  ℝ  →  𝑦  <  ( 𝑦  +  1 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  𝑦  <  ( 𝑦  +  1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  𝑦  ∈  ℝ )  | 
						
						
							| 10 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( 𝑦  +  1 )  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  ( 𝑦  +  1 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  ∧  𝑦  <  ( 𝑦  +  1 ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  ∧  𝑦  <  ( 𝑦  +  1 ) )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							mpan2d | 
							⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ℝ )  →  ( ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							expimpd | 
							⊢ ( 𝑦  ∈  ℝ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ralimdv | 
							⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							brralrspcev | 
							⊢ ( ( ( 𝑦  +  1 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  ( 𝑦  +  1 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 )  | 
						
						
							| 17 | 
							
								5 15 16
							 | 
							syl6an | 
							⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							biimtrrid | 
							⊢ ( 𝑦  ∈  ℝ  →  ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							expd | 
							⊢ ( 𝑦  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							impcom | 
							⊢ ( ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							rexlimdva | 
							⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ( ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑦  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 ) )  | 
						
						
							| 22 | 
							
								3 21
							 | 
							mpd | 
							⊢ ( ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ  →  ∃ 𝑥  ∈  ℝ ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  <  𝑥 )  |