Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
2 |
|
fimaxre3 |
⊢ ( ( ( 𝑀 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) |
3 |
1 2
|
mpan |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ↔ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) ) |
5 |
|
peano2re |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) |
6 |
|
ltp1 |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < ( 𝑦 + 1 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 < ( 𝑦 + 1 ) ) |
8 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
9 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → 𝑦 ∈ ℝ ) |
10 |
5
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( 𝑦 + 1 ) ∈ ℝ ) |
11 |
|
lelttr |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ∧ 𝑦 < ( 𝑦 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
13 |
7 12
|
mpan2d |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
14 |
13
|
expimpd |
⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
15 |
14
|
ralimdv |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) ) |
16 |
|
brralrspcev |
⊢ ( ( ( 𝑦 + 1 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < ( 𝑦 + 1 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |
17 |
5 15 16
|
syl6an |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
18 |
4 17
|
syl5bir |
⊢ ( 𝑦 ∈ ℝ → ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
19 |
18
|
expd |
⊢ ( 𝑦 ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) ) |
20 |
19
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
21 |
20
|
rexlimdva |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ( ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) ) |
22 |
3 21
|
mpd |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) < 𝑥 ) |