| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsnex.1 | ⊢ ( 𝑥  =  ( 𝑓 ‘ 𝐴 )  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 2 |  | fsn2g | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ↔  ( ( 𝑓 ‘ 𝐴 )  ∈  𝐷  ∧  𝑓  =  { 〈 𝐴 ,  ( 𝑓 ‘ 𝐴 ) 〉 } ) ) ) | 
						
							| 3 | 2 | simprbda | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑓 : { 𝐴 } ⟶ 𝐷 )  →  ( 𝑓 ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 4 | 3 | adantrr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) )  →  ( 𝑓 ‘ 𝐴 )  ∈  𝐷 ) | 
						
							| 5 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) )  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) )  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 6 |  | simprr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) )  →  𝜑 ) | 
						
							| 7 | 4 5 6 | rspcedvd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) )  →  ∃ 𝑥  ∈  𝐷 𝜓 ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 )  →  ∃ 𝑥  ∈  𝐷 𝜓 ) ) | 
						
							| 9 | 8 | exlimdv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 )  →  ∃ 𝑥  ∈  𝐷 𝜓 ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) )  →  ∃ 𝑥  ∈  𝐷 𝜓 ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  𝑉 | 
						
							| 12 |  | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  𝐷 𝜓 | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 ) | 
						
							| 14 |  | f1osng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑥  ∈  V )  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) | 
						
							| 15 | 14 | elvd | ⊢ ( 𝐴  ∈  𝑉  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) | 
						
							| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 } ) | 
						
							| 17 |  | f1of | ⊢ ( { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } –1-1-onto→ { 𝑥 }  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ { 𝑥 } ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  𝑥  ∈  𝐷 ) | 
						
							| 20 | 19 | snssd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  { 𝑥 }  ⊆  𝐷 ) | 
						
							| 21 | 18 20 | fssd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) | 
						
							| 22 |  | fvsng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑥  ∈  V )  →  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 )  =  𝑥 ) | 
						
							| 23 | 22 | elvd | ⊢ ( 𝐴  ∈  𝑉  →  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 )  =  𝑥 ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝐴  ∈  𝑉  →  𝑥  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) | 
						
							| 25 | 24 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  𝑥  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) | 
						
							| 26 |  | snex | ⊢ { 〈 𝐴 ,  𝑥 〉 }  ∈  V | 
						
							| 27 |  | feq1 | ⊢ ( 𝑓  =  { 〈 𝐴 ,  𝑥 〉 }  →  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ↔  { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ 𝐷 ) ) | 
						
							| 28 |  | fveq1 | ⊢ ( 𝑓  =  { 〈 𝐴 ,  𝑥 〉 }  →  ( 𝑓 ‘ 𝐴 )  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑓  =  { 〈 𝐴 ,  𝑥 〉 }  →  ( 𝑥  =  ( 𝑓 ‘ 𝐴 )  ↔  𝑥  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) ) | 
						
							| 30 | 27 29 | anbi12d | ⊢ ( 𝑓  =  { 〈 𝐴 ,  𝑥 〉 }  →  ( ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) )  ↔  ( { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) ) ) ) | 
						
							| 31 | 26 30 | spcev | ⊢ ( ( { 〈 𝐴 ,  𝑥 〉 } : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( { 〈 𝐴 ,  𝑥 〉 } ‘ 𝐴 ) )  →  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) ) | 
						
							| 32 | 21 25 31 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) ) | 
						
							| 33 |  | simprl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  →  𝑓 : { 𝐴 } ⟶ 𝐷 ) | 
						
							| 34 |  | simpllr | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  ∧  𝑓 : { 𝐴 } ⟶ 𝐷 )  →  𝜓 ) | 
						
							| 35 |  | simplrr | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  ∧  𝑓 : { 𝐴 } ⟶ 𝐷 )  →  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) | 
						
							| 36 | 35 1 | syl | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  ∧  𝑓 : { 𝐴 } ⟶ 𝐷 )  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 37 | 34 36 | mpbid | ⊢ ( ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  ∧  𝑓 : { 𝐴 } ⟶ 𝐷 )  →  𝜑 ) | 
						
							| 38 | 33 37 | mpdan | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  →  𝜑 ) | 
						
							| 39 | 33 38 | jca | ⊢ ( ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  ∧  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) ) )  →  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  ( ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) )  →  ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) ) ) | 
						
							| 41 | 40 | eximdv | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝑥  =  ( 𝑓 ‘ 𝐴 ) )  →  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) ) ) | 
						
							| 42 | 32 41 | mpd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  ∧  𝑥  ∈  𝐷 )  ∧  𝜓 )  →  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  →  ∃ 𝑥  ∈  𝐷 𝜓 ) | 
						
							| 44 | 13 42 43 | r19.29af | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐷 𝜓 )  →  ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 ) ) | 
						
							| 45 | 10 44 | impbida | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑓 ( 𝑓 : { 𝐴 } ⟶ 𝐷  ∧  𝜑 )  ↔  ∃ 𝑥  ∈  𝐷 𝜓 ) ) |