Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexcl2.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐸 = 1 ) |
4 |
3
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 1 ( .g ‘ 𝐺 ) 𝑥 ) ) |
5 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
1 2 5 6
|
gexid |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
9 |
1 5
|
mulg1 |
⊢ ( 𝑥 ∈ 𝑋 → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
11 |
4 8 10
|
3eqtr3rd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
12 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ↔ 𝑥 = ( 0g ‘ 𝐺 ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
14 |
13
|
ex |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 𝑥 ∈ 𝑋 → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
15 |
14
|
ssrdv |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ⊆ { ( 0g ‘ 𝐺 ) } ) |
16 |
1 6
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
18 |
17
|
snssd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → { ( 0g ‘ 𝐺 ) } ⊆ 𝑋 ) |
19 |
15 18
|
eqssd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) |
20 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
21 |
20
|
ensn1 |
⊢ { ( 0g ‘ 𝐺 ) } ≈ 1o |
22 |
19 21
|
eqbrtrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ≈ 1o ) |
23 |
|
simpl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐺 ∈ Mnd ) |
24 |
|
1nn |
⊢ 1 ∈ ℕ |
25 |
24
|
a1i |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 1 ∈ ℕ ) |
26 |
9
|
adantl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
27 |
|
en1eqsn |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) |
28 |
16 27
|
sylan |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝑋 = { ( 0g ‘ 𝐺 ) } ) |
29 |
28
|
eleq2d |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) ) |
30 |
29
|
biimpa |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ { ( 0g ‘ 𝐺 ) } ) |
31 |
30 12
|
sylib |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 = ( 0g ‘ 𝐺 ) ) |
32 |
26 31
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥 ∈ 𝑋 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ∀ 𝑥 ∈ 𝑋 ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
34 |
1 2 5 6
|
gexlem2 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) → 𝐸 ∈ ( 1 ... 1 ) ) |
35 |
23 25 33 34
|
syl3anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 ∈ ( 1 ... 1 ) ) |
36 |
|
elfz1eq |
⊢ ( 𝐸 ∈ ( 1 ... 1 ) → 𝐸 = 1 ) |
37 |
35 36
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 = 1 ) |
38 |
22 37
|
impbida |
⊢ ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝑋 ≈ 1o ) ) |