Metamath Proof Explorer


Theorem gex1

Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl2.1 X=BaseG
gexcl2.2 E=gExG
Assertion gex1 GMndE=1X1𝑜

Proof

Step Hyp Ref Expression
1 gexcl2.1 X=BaseG
2 gexcl2.2 E=gExG
3 simplr GMndE=1xXE=1
4 3 oveq1d GMndE=1xXEGx=1Gx
5 eqid G=G
6 eqid 0G=0G
7 1 2 5 6 gexid xXEGx=0G
8 7 adantl GMndE=1xXEGx=0G
9 1 5 mulg1 xX1Gx=x
10 9 adantl GMndE=1xX1Gx=x
11 4 8 10 3eqtr3rd GMndE=1xXx=0G
12 velsn x0Gx=0G
13 11 12 sylibr GMndE=1xXx0G
14 13 ex GMndE=1xXx0G
15 14 ssrdv GMndE=1X0G
16 1 6 mndidcl GMnd0GX
17 16 adantr GMndE=10GX
18 17 snssd GMndE=10GX
19 15 18 eqssd GMndE=1X=0G
20 fvex 0GV
21 20 ensn1 0G1𝑜
22 19 21 eqbrtrdi GMndE=1X1𝑜
23 simpl GMndX1𝑜GMnd
24 1nn 1
25 24 a1i GMndX1𝑜1
26 9 adantl GMndX1𝑜xX1Gx=x
27 en1eqsn 0GXX1𝑜X=0G
28 16 27 sylan GMndX1𝑜X=0G
29 28 eleq2d GMndX1𝑜xXx0G
30 29 biimpa GMndX1𝑜xXx0G
31 30 12 sylib GMndX1𝑜xXx=0G
32 26 31 eqtrd GMndX1𝑜xX1Gx=0G
33 32 ralrimiva GMndX1𝑜xX1Gx=0G
34 1 2 5 6 gexlem2 GMnd1xX1Gx=0GE11
35 23 25 33 34 syl3anc GMndX1𝑜E11
36 elfz1eq E11E=1
37 35 36 syl GMndX1𝑜E=1
38 22 37 impbida GMndE=1X1𝑜