Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexcl2.1 | |
|
gexcl2.2 | |
||
Assertion | gex1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl2.1 | |
|
2 | gexcl2.2 | |
|
3 | simplr | |
|
4 | 3 | oveq1d | |
5 | eqid | |
|
6 | eqid | |
|
7 | 1 2 5 6 | gexid | |
8 | 7 | adantl | |
9 | 1 5 | mulg1 | |
10 | 9 | adantl | |
11 | 4 8 10 | 3eqtr3rd | |
12 | velsn | |
|
13 | 11 12 | sylibr | |
14 | 13 | ex | |
15 | 14 | ssrdv | |
16 | 1 6 | mndidcl | |
17 | 16 | adantr | |
18 | 17 | snssd | |
19 | 15 18 | eqssd | |
20 | fvex | |
|
21 | 20 | ensn1 | |
22 | 19 21 | eqbrtrdi | |
23 | simpl | |
|
24 | 1nn | |
|
25 | 24 | a1i | |
26 | 9 | adantl | |
27 | en1eqsn | |
|
28 | 16 27 | sylan | |
29 | 28 | eleq2d | |
30 | 29 | biimpa | |
31 | 30 12 | sylib | |
32 | 26 31 | eqtrd | |
33 | 32 | ralrimiva | |
34 | 1 2 5 6 | gexlem2 | |
35 | 23 25 33 34 | syl3anc | |
36 | elfz1eq | |
|
37 | 35 36 | syl | |
38 | 22 37 | impbida | |