| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							harcl | 
							⊢ ( har ‘ 𝐴 )  ∈  On  | 
						
						
							| 2 | 
							
								
							 | 
							sdomdom | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  𝑥  ≼  ( har ‘ 𝐴 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ondomen | 
							⊢ ( ( ( har ‘ 𝐴 )  ∈  On  ∧  𝑥  ≼  ( har ‘ 𝐴 ) )  →  𝑥  ∈  dom  card )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							sylancr | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  𝑥  ∈  dom  card )  | 
						
						
							| 5 | 
							
								
							 | 
							onenon | 
							⊢ ( ( har ‘ 𝐴 )  ∈  On  →  ( har ‘ 𝐴 )  ∈  dom  card )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ax-mp | 
							⊢ ( har ‘ 𝐴 )  ∈  dom  card  | 
						
						
							| 7 | 
							
								
							 | 
							cardsdom2 | 
							⊢ ( ( 𝑥  ∈  dom  card  ∧  ( har ‘ 𝐴 )  ∈  dom  card )  →  ( ( card ‘ 𝑥 )  ∈  ( card ‘ ( har ‘ 𝐴 ) )  ↔  𝑥  ≺  ( har ‘ 𝐴 ) ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylancl | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ( ( card ‘ 𝑥 )  ∈  ( card ‘ ( har ‘ 𝐴 ) )  ↔  𝑥  ≺  ( har ‘ 𝐴 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ibir | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ( card ‘ 𝑥 )  ∈  ( card ‘ ( har ‘ 𝐴 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							harcard | 
							⊢ ( card ‘ ( har ‘ 𝐴 ) )  =  ( har ‘ 𝐴 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eleqtrdi | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ( card ‘ 𝑥 )  ∈  ( har ‘ 𝐴 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elharval | 
							⊢ ( ( card ‘ 𝑥 )  ∈  ( har ‘ 𝐴 )  ↔  ( ( card ‘ 𝑥 )  ∈  On  ∧  ( card ‘ 𝑥 )  ≼  𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simprbi | 
							⊢ ( ( card ‘ 𝑥 )  ∈  ( har ‘ 𝐴 )  →  ( card ‘ 𝑥 )  ≼  𝐴 )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							syl | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ( card ‘ 𝑥 )  ≼  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							cardid2 | 
							⊢ ( 𝑥  ∈  dom  card  →  ( card ‘ 𝑥 )  ≈  𝑥 )  | 
						
						
							| 16 | 
							
								
							 | 
							domen1 | 
							⊢ ( ( card ‘ 𝑥 )  ≈  𝑥  →  ( ( card ‘ 𝑥 )  ≼  𝐴  ↔  𝑥  ≼  𝐴 ) )  | 
						
						
							| 17 | 
							
								4 15 16
							 | 
							3syl | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ( ( card ‘ 𝑥 )  ≼  𝐴  ↔  𝑥  ≼  𝐴 ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							mpbid | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  𝑥  ≼  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							domnsym | 
							⊢ ( 𝑥  ≼  𝐴  →  ¬  𝐴  ≺  𝑥 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( 𝑥  ≺  ( har ‘ 𝐴 )  →  ¬  𝐴  ≺  𝑥 )  | 
						
						
							| 21 | 
							
								20
							 | 
							con2i | 
							⊢ ( 𝐴  ≺  𝑥  →  ¬  𝑥  ≺  ( har ‘ 𝐴 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							sdomen2 | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ( 𝑥  ≺  ( har ‘ 𝐴 )  ↔  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							notbid | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ( ¬  𝑥  ≺  ( har ‘ 𝐴 )  ↔  ¬  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							imbitrid | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ( 𝐴  ≺  𝑥  →  ¬  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							imnan | 
							⊢ ( ( 𝐴  ≺  𝑥  →  ¬  𝑥  ≺  𝒫  𝐴 )  ↔  ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sylib | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							alrimiv | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							olcd | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ( 𝐴  ∈  Fin  ∨  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							relen | 
							⊢ Rel   ≈   | 
						
						
							| 30 | 
							
								29
							 | 
							brrelex2i | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  𝒫  𝐴  ∈  V )  | 
						
						
							| 31 | 
							
								
							 | 
							pwexb | 
							⊢ ( 𝐴  ∈  V  ↔  𝒫  𝐴  ∈  V )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylibr | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  𝐴  ∈  V )  | 
						
						
							| 33 | 
							
								
							 | 
							elgch | 
							⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  GCH  ↔  ( 𝐴  ∈  Fin  ∨  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  ( 𝐴  ∈  GCH  ↔  ( 𝐴  ∈  Fin  ∨  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) )  | 
						
						
							| 35 | 
							
								28 34
							 | 
							mpbird | 
							⊢ ( ( har ‘ 𝐴 )  ≈  𝒫  𝐴  →  𝐴  ∈  GCH )  |