| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzo0 |
⊢ ( 𝐴 ..^ 𝐴 ) = ∅ |
| 2 |
1
|
fveq2i |
⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( ♯ ‘ ∅ ) |
| 3 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 4 |
2 3
|
eqtri |
⊢ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = 0 |
| 5 |
|
eluzel2 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℤ ) |
| 6 |
5
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 7 |
6
|
subidd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 8 |
4 7
|
eqtr4id |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ..^ 𝐴 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐵 = 𝐴 → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 − 𝐴 ) = ( 𝐴 − 𝐴 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝐵 = 𝐴 → ( ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ↔ ( ♯ ‘ ( 𝐴 ..^ 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) ) |
| 13 |
8 12
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 14 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) |
| 15 |
|
fzoval |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ 𝐵 ) = ( 𝐴 ... ( 𝐵 − 1 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) ) |
| 19 |
|
hashfz |
⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) = ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) ) |
| 20 |
14
|
zcnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 21 |
|
1cnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) |
| 22 |
20 21 6
|
sub32d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − 1 ) − 𝐴 ) = ( ( 𝐵 − 𝐴 ) − 1 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) = ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) ) |
| 24 |
20 6
|
subcld |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 25 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 26 |
|
npcan |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 27 |
24 25 26
|
sylancl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 𝐴 ) − 1 ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 28 |
23 27
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐵 − 1 ) − 𝐴 ) + 1 ) = ( 𝐵 − 𝐴 ) ) |
| 29 |
19 28
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ... ( 𝐵 − 1 ) ) ) = ( 𝐵 − 𝐴 ) ) |
| 30 |
18 29
|
eqtrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) ) |
| 32 |
|
uzm1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 = 𝐴 ∨ ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) ) |
| 33 |
13 31 32
|
mpjaod |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ♯ ‘ ( 𝐴 ..^ 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |