Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1eulem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1eulem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1eulem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1eulem.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmap1eulem.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap1eulem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
hdmap1eulem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap1eulem.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
hdmap1eulem.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
hdmap1eulem.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
hdmap1eulem.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
hdmap1eulem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap1eulem.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmap1eulem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
hdmap1eulem.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
16 |
|
hdmap1eulem.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
17 |
|
hdmap1eulem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
18 |
|
hdmap1eulem.y |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
19 |
|
hdmap1eulem.l |
⊢ 𝐿 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18
|
mapdh9aOLDN |
⊢ ( 𝜑 → ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) |
21 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝐹 ∈ 𝐷 ) |
24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧 ∈ 𝑉 ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19
|
hdmap1valc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) = ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ) |
26 |
25
|
oteq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 = 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) |
27 |
26
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
29 |
1 2 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LMod ) |
31 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
32 |
3 28 6 29 31 18
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) |
35 |
5 28 30 33 24 34
|
lssneln0 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
36 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
37 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LVec ) |
39 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋 ∈ 𝑉 ) |
40 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
41 |
3 6 38 24 39 40 34
|
lspindpi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
42 |
41
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
43 |
42
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) ) |
44 |
10 19 1 12 2 3 4 5 6 7 8 9 11 21 23 36 22 24 43
|
mapdhcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ∈ 𝐷 ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 21 35 44 40 19
|
hdmap1valc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) |
46 |
27 45
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) |
47 |
46
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ↔ 𝑦 = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) |
48 |
47
|
pm5.74da |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) → ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ↔ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
49 |
48
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ↔ ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
50 |
49
|
reubidv |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ↔ ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐿 ‘ 〈 𝑧 , ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
51 |
20 50
|
mpbird |
⊢ ( 𝜑 → ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) |