Step |
Hyp |
Ref |
Expression |
1 |
|
imaeqexov.1 |
⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ) |
3 |
|
ovelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ) ) |
4 |
3
|
anbi1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
5 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
6 |
5
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
8 |
6 7
|
bitr2i |
⊢ ( ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
9 |
4 8
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
10 |
9
|
exbidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) ) |
11 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
12 |
|
rexcom4 |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ) |
13 |
|
ovex |
⊢ ( 𝑦 𝐹 𝑧 ) ∈ V |
14 |
13 1
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ 𝜓 ) |
15 |
14
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 𝜓 ) |
16 |
12 15
|
bitr3i |
⊢ ( ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 𝜓 ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) |
18 |
11 17
|
bitr3i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) |
19 |
10 18
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) ) |
20 |
2 19
|
bitrid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝜓 ) ) |