Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ∩ 𝐴 ) = ( 𝑈 ∩ 𝐴 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ∩ 𝐴 ) ∈ Univ ↔ ( 𝑈 ∩ 𝐴 ) ∈ Univ ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( 𝑢 ∩ 𝐴 ) ∈ Univ ) ↔ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( 𝑈 ∩ 𝐴 ) ∈ Univ ) ) ) |
4 |
|
elgrug |
⊢ ( 𝑢 ∈ Univ → ( 𝑢 ∈ Univ ↔ ( Tr 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) ) ) |
5 |
4
|
ibi |
⊢ ( 𝑢 ∈ Univ → ( Tr 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) ) |
6 |
|
trin |
⊢ ( ( Tr 𝑢 ∧ Tr 𝐴 ) → Tr ( 𝑢 ∩ 𝐴 ) ) |
7 |
6
|
ex |
⊢ ( Tr 𝑢 → ( Tr 𝐴 → Tr ( 𝑢 ∩ 𝐴 ) ) ) |
8 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝐴 ) ⊆ 𝑢 |
9 |
|
ssralv |
⊢ ( ( 𝑢 ∩ 𝐴 ) ⊆ 𝑢 → ( ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) |
11 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝐴 ) ⊆ 𝐴 |
12 |
|
ssralv |
⊢ ( ( 𝑢 ∩ 𝐴 ) ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) |
14 |
|
elin |
⊢ ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ↔ ( 𝒫 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝐴 ) ) |
15 |
14
|
simplbi2 |
⊢ ( 𝒫 𝑥 ∈ 𝑢 → ( 𝒫 𝑥 ∈ 𝐴 → 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
16 |
|
ssralv |
⊢ ( ( 𝑢 ∩ 𝐴 ) ⊆ 𝑢 → ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
17 |
8 16
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝑢 ) |
18 |
|
ssralv |
⊢ ( ( 𝑢 ∩ 𝐴 ) ⊆ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝐴 ) ) |
19 |
11 18
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝐴 ) |
20 |
|
elin |
⊢ ( { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ↔ ( { 𝑥 , 𝑦 } ∈ 𝑢 ∧ { 𝑥 , 𝑦 } ∈ 𝐴 ) ) |
21 |
20
|
simplbi2 |
⊢ ( { 𝑥 , 𝑦 } ∈ 𝑢 → ( { 𝑥 , 𝑦 } ∈ 𝐴 → { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
22 |
21
|
ral2imi |
⊢ ( ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝑢 → ( ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ 𝐴 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
23 |
17 19 22
|
syl2im |
⊢ ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 → ( ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
24 |
15 23
|
im2anan9 |
⊢ ( ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) → ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ) → ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
25 |
|
vex |
⊢ 𝑢 ∈ V |
26 |
|
mapss |
⊢ ( ( 𝑢 ∈ V ∧ ( 𝑢 ∩ 𝐴 ) ⊆ 𝑢 ) → ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ⊆ ( 𝑢 ↑m 𝑥 ) ) |
27 |
25 8 26
|
mp2an |
⊢ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ⊆ ( 𝑢 ↑m 𝑥 ) |
28 |
|
ssralv |
⊢ ( ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ⊆ ( 𝑢 ↑m 𝑥 ) → ( ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 → ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) |
29 |
27 28
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 → ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) |
30 |
25
|
inex1 |
⊢ ( 𝑢 ∩ 𝐴 ) ∈ V |
31 |
|
vex |
⊢ 𝑥 ∈ V |
32 |
30 31
|
elmap |
⊢ ( 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ↔ 𝑦 : 𝑥 ⟶ ( 𝑢 ∩ 𝐴 ) ) |
33 |
|
fss |
⊢ ( ( 𝑦 : 𝑥 ⟶ ( 𝑢 ∩ 𝐴 ) ∧ ( 𝑢 ∩ 𝐴 ) ⊆ 𝐴 ) → 𝑦 : 𝑥 ⟶ 𝐴 ) |
34 |
11 33
|
mpan2 |
⊢ ( 𝑦 : 𝑥 ⟶ ( 𝑢 ∩ 𝐴 ) → 𝑦 : 𝑥 ⟶ 𝐴 ) |
35 |
32 34
|
sylbi |
⊢ ( 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) → 𝑦 : 𝑥 ⟶ 𝐴 ) |
36 |
35
|
imim1i |
⊢ ( ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) → ∪ ran 𝑦 ∈ 𝐴 ) ) |
37 |
36
|
alimi |
⊢ ( ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) → ∪ ran 𝑦 ∈ 𝐴 ) ) |
38 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) → ∪ ran 𝑦 ∈ 𝐴 ) ) |
39 |
37 38
|
sylibr |
⊢ ( ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝐴 ) |
40 |
|
elin |
⊢ ( ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ↔ ( ∪ ran 𝑦 ∈ 𝑢 ∧ ∪ ran 𝑦 ∈ 𝐴 ) ) |
41 |
40
|
simplbi2 |
⊢ ( ∪ ran 𝑦 ∈ 𝑢 → ( ∪ ran 𝑦 ∈ 𝐴 → ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
42 |
41
|
ral2imi |
⊢ ( ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 → ( ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝐴 → ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
43 |
29 39 42
|
syl2im |
⊢ ( ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 → ( ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) → ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
44 |
24 43
|
im2anan9 |
⊢ ( ( ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ( ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ( ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
45 |
44
|
3impa |
⊢ ( ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ( ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ( ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
46 |
|
df-3an |
⊢ ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ↔ ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ) ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) |
47 |
|
df-3an |
⊢ ( ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ↔ ( ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) |
48 |
45 46 47
|
3imtr4g |
⊢ ( ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ( ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
49 |
48
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ( ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
50 |
10 13 49
|
syl2im |
⊢ ( ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
51 |
7 50
|
im2anan9 |
⊢ ( ( Tr 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( Tr ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) ) |
52 |
5 51
|
syl |
⊢ ( 𝑢 ∈ Univ → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( Tr ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) ) |
53 |
|
elgrug |
⊢ ( ( 𝑢 ∩ 𝐴 ) ∈ V → ( ( 𝑢 ∩ 𝐴 ) ∈ Univ ↔ ( Tr ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) ) |
54 |
30 53
|
ax-mp |
⊢ ( ( 𝑢 ∩ 𝐴 ) ∈ Univ ↔ ( Tr ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ( 𝒫 𝑥 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) { 𝑥 , 𝑦 } ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∀ 𝑦 ∈ ( ( 𝑢 ∩ 𝐴 ) ↑m 𝑥 ) ∪ ran 𝑦 ∈ ( 𝑢 ∩ 𝐴 ) ) ) ) |
55 |
52 54
|
syl6ibr |
⊢ ( 𝑢 ∈ Univ → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( 𝑢 ∩ 𝐴 ) ∈ Univ ) ) |
56 |
3 55
|
vtoclga |
⊢ ( 𝑈 ∈ Univ → ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( 𝑈 ∩ 𝐴 ) ∈ Univ ) ) |
57 |
56
|
com12 |
⊢ ( ( Tr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝒫 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 { 𝑥 , 𝑦 } ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 : 𝑥 ⟶ 𝐴 → ∪ ran 𝑦 ∈ 𝐴 ) ) ) → ( 𝑈 ∈ Univ → ( 𝑈 ∩ 𝐴 ) ∈ Univ ) ) |