| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl1.b |
⊢ 𝐵 = ( 𝐴 (,) +∞ ) |
| 2 |
|
ioombl1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
ioombl1.e |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 4 |
|
ioombl1.v |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
| 5 |
|
ioombl1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 6 |
|
ioombl1.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 7 |
|
ioombl1.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 8 |
|
ioombl1.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
| 9 |
|
ioombl1.f1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 10 |
|
ioombl1.f2 |
⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
| 11 |
|
ioombl1.f3 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 12 |
|
ioombl1.p |
⊢ 𝑃 = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) |
| 13 |
|
ioombl1.q |
⊢ 𝑄 = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) |
| 14 |
|
ioombl1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ 〈 if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) , 𝑄 〉 ) |
| 15 |
|
ioombl1.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ 〈 𝑃 , if ( if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) ≤ 𝑄 , if ( 𝑃 ≤ 𝐴 , 𝐴 , 𝑃 ) , 𝑄 ) 〉 ) |
| 16 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
| 17 |
16 6
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 18 |
9 17
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 19 |
18
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 20 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 21 |
19 20
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 22 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 24 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 25 |
4 24
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 26 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 28 |
18
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 29 |
|
1nn |
⊢ 1 ∈ ℕ |
| 30 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ℕ ∧ 1 ∈ ℕ ) → ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) |
| 31 |
28 29 30
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) |
| 32 |
21 31
|
sseldd |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ℝ* ) |
| 33 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 34 |
|
ffvelcdm |
⊢ ( ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( 𝑆 ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 35 |
18 29 34
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 36 |
33 35
|
sselid |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ∈ ℝ ) |
| 37 |
36
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( 𝑆 ‘ 1 ) ) |
| 38 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 1 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 1 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 39 |
21 31 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 40 |
27 32 23 37 39
|
xrltletrd |
⊢ ( 𝜑 → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
| 41 |
|
xrre |
⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 42 |
23 25 40 11 41
|
syl22anc |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |