Step |
Hyp |
Ref |
Expression |
1 |
|
ipcau.v |
β’ π = ( Base β π ) |
2 |
|
ipcau.h |
β’ , = ( Β·π β π ) |
3 |
|
ipcau.n |
β’ π = ( norm β π ) |
4 |
|
eqid |
β’ ( toβPreHil β π ) = ( toβPreHil β π ) |
5 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
6 |
|
simp1 |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β π β βPreHil ) |
7 |
|
cphphl |
β’ ( π β βPreHil β π β PreHil ) |
8 |
6 7
|
syl |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β π β PreHil ) |
9 |
|
eqid |
β’ ( Base β ( Scalar β π ) ) = ( Base β ( Scalar β π ) ) |
10 |
5 9
|
cphsca |
β’ ( π β βPreHil β ( Scalar β π ) = ( βfld βΎs ( Base β ( Scalar β π ) ) ) ) |
11 |
6 10
|
syl |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( Scalar β π ) = ( βfld βΎs ( Base β ( Scalar β π ) ) ) ) |
12 |
5 9
|
cphsqrtcl |
β’ ( ( π β βPreHil β§ ( π₯ β ( Base β ( Scalar β π ) ) β§ π₯ β β β§ 0 β€ π₯ ) ) β ( β β π₯ ) β ( Base β ( Scalar β π ) ) ) |
13 |
6 12
|
sylan |
β’ ( ( ( π β βPreHil β§ π β π β§ π β π ) β§ ( π₯ β ( Base β ( Scalar β π ) ) β§ π₯ β β β§ 0 β€ π₯ ) ) β ( β β π₯ ) β ( Base β ( Scalar β π ) ) ) |
14 |
1 2
|
ipge0 |
β’ ( ( π β βPreHil β§ π₯ β π ) β 0 β€ ( π₯ , π₯ ) ) |
15 |
6 14
|
sylan |
β’ ( ( ( π β βPreHil β§ π β π β§ π β π ) β§ π₯ β π ) β 0 β€ ( π₯ , π₯ ) ) |
16 |
|
eqid |
β’ ( norm β ( toβPreHil β π ) ) = ( norm β ( toβPreHil β π ) ) |
17 |
|
eqid |
β’ ( ( π , π ) / ( π , π ) ) = ( ( π , π ) / ( π , π ) ) |
18 |
|
simp2 |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β π β π ) |
19 |
|
simp3 |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β π β π ) |
20 |
4 1 5 8 11 2 13 15 9 16 17 18 19
|
ipcau2 |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( abs β ( π , π ) ) β€ ( ( ( norm β ( toβPreHil β π ) ) β π ) Β· ( ( norm β ( toβPreHil β π ) ) β π ) ) ) |
21 |
4 3
|
cphtcphnm |
β’ ( π β βPreHil β π = ( norm β ( toβPreHil β π ) ) ) |
22 |
6 21
|
syl |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β π = ( norm β ( toβPreHil β π ) ) ) |
23 |
22
|
fveq1d |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( π β π ) = ( ( norm β ( toβPreHil β π ) ) β π ) ) |
24 |
22
|
fveq1d |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( π β π ) = ( ( norm β ( toβPreHil β π ) ) β π ) ) |
25 |
23 24
|
oveq12d |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( ( π β π ) Β· ( π β π ) ) = ( ( ( norm β ( toβPreHil β π ) ) β π ) Β· ( ( norm β ( toβPreHil β π ) ) β π ) ) ) |
26 |
20 25
|
breqtrrd |
β’ ( ( π β βPreHil β§ π β π β§ π β π ) β ( abs β ( π , π ) ) β€ ( ( π β π ) Β· ( π β π ) ) ) |