| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iseralt.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
iseralt.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
iseralt.3 |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
| 4 |
|
iseralt.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 5 |
|
iseralt.5 |
⊢ ( 𝜑 → 𝐺 ⇝ 0 ) |
| 6 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 7 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 8 |
7 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 𝑁 ∈ ℤ ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 𝐺 ⇝ 0 ) |
| 11 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑁 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑁 ) ∈ ℂ ) |
| 13 |
|
1z |
⊢ 1 ∈ ℤ |
| 14 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
| 15 |
|
zex |
⊢ ℤ ∈ V |
| 16 |
14 15
|
climconst2 |
⊢ ( ( ( 𝐺 ‘ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ⇝ ( 𝐺 ‘ 𝑁 ) ) |
| 17 |
12 13 16
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ⇝ ( 𝐺 ‘ 𝑁 ) ) |
| 18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐺 : 𝑍 ⟶ ℝ ) |
| 19 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 20 |
19
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 21 |
18 20
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 22 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑛 ∈ ℤ ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ℤ ) |
| 24 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑁 ) ∈ V |
| 25 |
24
|
fvconst2 |
⊢ ( 𝑛 ∈ ℤ → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑁 ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑁 ) ) |
| 27 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑁 ) ∈ ℝ ) |
| 28 |
26 27
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) ∈ ℝ ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 30 |
18
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝐺 : 𝑍 ⟶ ℝ ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ 𝑍 ) |
| 32 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 33 |
1
|
uztrn2 |
⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 34 |
31 32 33
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 35 |
30 34
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 36 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ) |
| 37 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... ( 𝑛 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 38 |
33
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 40 |
38 39
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 41 |
36 37 40
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑁 ... ( 𝑛 − 1 ) ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 42 |
29 35 41
|
monoord2 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑁 ) ) |
| 43 |
42 26
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( ( ℤ × { ( 𝐺 ‘ 𝑁 ) } ) ‘ 𝑛 ) ) |
| 44 |
6 9 10 17 21 28 43
|
climle |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ 𝑁 ) ) |