Metamath Proof Explorer


Theorem isf32lem6

Description: Lemma for isfin3-2 . Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
isf32lem.e 𝐽 = ( 𝑢 ∈ ω ↦ ( 𝑣𝑆 ( 𝑣𝑆 ) ≈ 𝑢 ) )
isf32lem.f 𝐾 = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 )
Assertion isf32lem6 ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 isf32lem.a ( 𝜑𝐹 : ω ⟶ 𝒫 𝐺 )
2 isf32lem.b ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹𝑥 ) )
3 isf32lem.c ( 𝜑 → ¬ ran 𝐹 ∈ ran 𝐹 )
4 isf32lem.d 𝑆 = { 𝑦 ∈ ω ∣ ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) }
5 isf32lem.e 𝐽 = ( 𝑢 ∈ ω ↦ ( 𝑣𝑆 ( 𝑣𝑆 ) ≈ 𝑢 ) )
6 isf32lem.f 𝐾 = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 )
7 6 fveq1i ( 𝐾𝐴 ) = ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 )
8 4 ssrab3 𝑆 ⊆ ω
9 1 2 3 4 isf32lem5 ( 𝜑 → ¬ 𝑆 ∈ Fin )
10 5 fin23lem22 ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐽 : ω –1-1-onto𝑆 )
11 8 9 10 sylancr ( 𝜑𝐽 : ω –1-1-onto𝑆 )
12 f1of ( 𝐽 : ω –1-1-onto𝑆𝐽 : ω ⟶ 𝑆 )
13 11 12 syl ( 𝜑𝐽 : ω ⟶ 𝑆 )
14 fvco3 ( ( 𝐽 : ω ⟶ 𝑆𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) )
15 13 14 sylan ( ( 𝜑𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) )
16 9 adantr ( ( 𝜑𝐴 ∈ ω ) → ¬ 𝑆 ∈ Fin )
17 8 16 10 sylancr ( ( 𝜑𝐴 ∈ ω ) → 𝐽 : ω –1-1-onto𝑆 )
18 17 12 syl ( ( 𝜑𝐴 ∈ ω ) → 𝐽 : ω ⟶ 𝑆 )
19 ffvelrn ( ( 𝐽 : ω ⟶ 𝑆𝐴 ∈ ω ) → ( 𝐽𝐴 ) ∈ 𝑆 )
20 18 19 sylancom ( ( 𝜑𝐴 ∈ ω ) → ( 𝐽𝐴 ) ∈ 𝑆 )
21 fveq2 ( 𝑤 = ( 𝐽𝐴 ) → ( 𝐹𝑤 ) = ( 𝐹 ‘ ( 𝐽𝐴 ) ) )
22 suceq ( 𝑤 = ( 𝐽𝐴 ) → suc 𝑤 = suc ( 𝐽𝐴 ) )
23 22 fveq2d ( 𝑤 = ( 𝐽𝐴 ) → ( 𝐹 ‘ suc 𝑤 ) = ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) )
24 21 23 difeq12d ( 𝑤 = ( 𝐽𝐴 ) → ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
25 eqid ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) = ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) )
26 fvex ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∈ V
27 26 difexi ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) ∈ V
28 24 25 27 fvmpt ( ( 𝐽𝐴 ) ∈ 𝑆 → ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
29 20 28 syl ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ‘ ( 𝐽𝐴 ) ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
30 15 29 eqtrd ( ( 𝜑𝐴 ∈ ω ) → ( ( ( 𝑤𝑆 ↦ ( ( 𝐹𝑤 ) ∖ ( 𝐹 ‘ suc 𝑤 ) ) ) ∘ 𝐽 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
31 7 30 eqtrid ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) = ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) )
32 suceq ( 𝑦 = ( 𝐽𝐴 ) → suc 𝑦 = suc ( 𝐽𝐴 ) )
33 32 fveq2d ( 𝑦 = ( 𝐽𝐴 ) → ( 𝐹 ‘ suc 𝑦 ) = ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) )
34 fveq2 ( 𝑦 = ( 𝐽𝐴 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐽𝐴 ) ) )
35 33 34 psseq12d ( 𝑦 = ( 𝐽𝐴 ) → ( ( 𝐹 ‘ suc 𝑦 ) ⊊ ( 𝐹𝑦 ) ↔ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ) )
36 35 4 elrab2 ( ( 𝐽𝐴 ) ∈ 𝑆 ↔ ( ( 𝐽𝐴 ) ∈ ω ∧ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ) )
37 36 simprbi ( ( 𝐽𝐴 ) ∈ 𝑆 → ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽𝐴 ) ) )
38 20 37 syl ( ( 𝜑𝐴 ∈ ω ) → ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽𝐴 ) ) )
39 df-pss ( ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊊ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ↔ ( ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ) )
40 38 39 sylib ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ) )
41 pssdifn0 ( ( ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ⊆ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∧ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ≠ ( 𝐹 ‘ ( 𝐽𝐴 ) ) ) → ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) ≠ ∅ )
42 40 41 syl ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝐹 ‘ ( 𝐽𝐴 ) ) ∖ ( 𝐹 ‘ suc ( 𝐽𝐴 ) ) ) ≠ ∅ )
43 31 42 eqnetrd ( ( 𝜑𝐴 ∈ ω ) → ( 𝐾𝐴 ) ≠ ∅ )