Step |
Hyp |
Ref |
Expression |
1 |
|
ismntoplly |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ 𝑉 ) → ( 𝑁 ManTop 𝐽 ↔ ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
2 |
|
haustop |
⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Top ) |
3 |
2
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → 𝐽 ∈ Top ) |
4 |
3
|
biantrurd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) ) |
5 |
|
hmpher |
⊢ ≃ Er Top |
6 |
|
errel |
⊢ ( ≃ Er Top → Rel ≃ ) |
7 |
|
relelec |
⊢ ( Rel ≃ → ( ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ↔ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ≃ ( 𝐽 ↾t 𝑢 ) ) ) |
8 |
5 6 7
|
mp2b |
⊢ ( ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ↔ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ≃ ( 𝐽 ↾t 𝑢 ) ) |
9 |
|
hmphsymb |
⊢ ( ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ≃ ( 𝐽 ↾t 𝑢 ) ↔ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) |
10 |
8 9
|
bitr2i |
⊢ ( ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ↔ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) |
11 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ↔ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) |
12 |
11
|
anbi2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ↔ ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
13 |
12
|
rexbidv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ↔ ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
14 |
13
|
2ralbidv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
15 |
|
islly |
⊢ ( 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
16 |
15
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) ) |
17 |
4 14 16
|
3bitr4rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ Haus ) → ( 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) |
18 |
17
|
pm5.32da |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ↔ ( 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐽 ∈ 2ndω ∧ ( 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ↔ ( 𝐽 ∈ 2ndω ∧ ( 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ↔ ( 𝐽 ∈ 2ndω ∧ ( 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ) ) |
21 |
|
3anass |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ↔ ( 𝐽 ∈ 2ndω ∧ ( 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) |
22 |
19 20 21
|
3bitr4g |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ↔ ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ 𝑉 ) → ( ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ 𝐽 ∈ Locally [ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ] ≃ ) ↔ ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) |
24 |
1 23
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐽 ∈ 𝑉 ) → ( 𝑁 ManTop 𝐽 ↔ ( 𝐽 ∈ 2ndω ∧ 𝐽 ∈ Haus ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ≃ ( TopOpen ‘ ( 𝔼hil ‘ 𝑁 ) ) ) ) ) ) |