Metamath Proof Explorer


Theorem ixxssixx

Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypotheses ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
ixx.2 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧𝑧 𝑈 𝑦 ) } )
ixx.3 ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤𝐴 𝑇 𝑤 ) )
ixx.4 ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵𝑤 𝑈 𝐵 ) )
Assertion ixxssixx ( 𝐴 𝑂 𝐵 ) ⊆ ( 𝐴 𝑃 𝐵 )

Proof

Step Hyp Ref Expression
1 ixx.1 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧𝑧 𝑆 𝑦 ) } )
2 ixx.2 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧𝑧 𝑈 𝑦 ) } )
3 ixx.3 ( ( 𝐴 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤𝐴 𝑇 𝑤 ) )
4 ixx.4 ( ( 𝑤 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵𝑤 𝑈 𝐵 ) )
5 1 elmpocl ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) )
6 simp1 ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* )
7 6 a1i ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* ) )
8 simpl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* )
9 3simpa ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤 ) )
10 3 expimpd ( 𝐴 ∈ ℝ* → ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤 ) → 𝐴 𝑇 𝑤 ) )
11 8 9 10 syl2im ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → 𝐴 𝑇 𝑤 ) )
12 simpr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* )
13 3simpb ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ*𝑤 𝑆 𝐵 ) )
14 4 ancoms ( ( 𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵𝑤 𝑈 𝐵 ) )
15 14 expimpd ( 𝐵 ∈ ℝ* → ( ( 𝑤 ∈ ℝ*𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) )
16 12 13 15 syl2im ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) )
17 7 11 16 3jcad ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ*𝐴 𝑇 𝑤𝑤 𝑈 𝐵 ) ) )
18 1 elixx1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ*𝐴 𝑅 𝑤𝑤 𝑆 𝐵 ) ) )
19 2 elixx1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ↔ ( 𝑤 ∈ ℝ*𝐴 𝑇 𝑤𝑤 𝑈 𝐵 ) ) )
20 17 18 19 3imtr4d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) )
21 5 20 mpcom ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) )
22 21 ssriv ( 𝐴 𝑂 𝐵 ) ⊆ ( 𝐴 𝑃 𝐵 )