Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) |
2 |
|
ixx.2 |
⊢ 𝑃 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑇 𝑧 ∧ 𝑧 𝑈 𝑦 ) } ) |
3 |
|
ixx.3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 𝑅 𝑤 → 𝐴 𝑇 𝑤 ) ) |
4 |
|
ixx.4 |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 𝑈 𝐵 ) ) |
5 |
1
|
elmpocl |
⊢ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
6 |
|
simp1 |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* ) |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 ∈ ℝ* ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
9 |
|
3simpa |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ) ) |
10 |
3
|
expimpd |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ) → 𝐴 𝑇 𝑤 ) ) |
11 |
8 9 10
|
syl2im |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝐴 𝑇 𝑤 ) ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) |
13 |
|
3simpb |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝑤 𝑆 𝐵 ) ) |
14 |
4
|
ancoms |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑤 𝑆 𝐵 → 𝑤 𝑈 𝐵 ) ) |
15 |
14
|
expimpd |
⊢ ( 𝐵 ∈ ℝ* → ( ( 𝑤 ∈ ℝ* ∧ 𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) ) |
16 |
12 13 15
|
syl2im |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → 𝑤 𝑈 𝐵 ) ) |
17 |
7 11 16
|
3jcad |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) → ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑇 𝑤 ∧ 𝑤 𝑈 𝐵 ) ) ) |
18 |
1
|
elixx1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑅 𝑤 ∧ 𝑤 𝑆 𝐵 ) ) ) |
19 |
2
|
elixx1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ↔ ( 𝑤 ∈ ℝ* ∧ 𝐴 𝑇 𝑤 ∧ 𝑤 𝑈 𝐵 ) ) ) |
20 |
17 18 19
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) ) |
21 |
5 20
|
mpcom |
⊢ ( 𝑤 ∈ ( 𝐴 𝑂 𝐵 ) → 𝑤 ∈ ( 𝐴 𝑃 𝐵 ) ) |
22 |
21
|
ssriv |
⊢ ( 𝐴 𝑂 𝐵 ) ⊆ ( 𝐴 𝑃 𝐵 ) |