Metamath Proof Explorer


Theorem lbsind

Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses lbsss.v 𝑉 = ( Base ‘ 𝑊 )
lbsss.j 𝐽 = ( LBasis ‘ 𝑊 )
lbssp.n 𝑁 = ( LSpan ‘ 𝑊 )
lbsind.f 𝐹 = ( Scalar ‘ 𝑊 )
lbsind.s · = ( ·𝑠𝑊 )
lbsind.k 𝐾 = ( Base ‘ 𝐹 )
lbsind.z 0 = ( 0g𝐹 )
Assertion lbsind ( ( ( 𝐵𝐽𝐸𝐵 ) ∧ ( 𝐴𝐾𝐴0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )

Proof

Step Hyp Ref Expression
1 lbsss.v 𝑉 = ( Base ‘ 𝑊 )
2 lbsss.j 𝐽 = ( LBasis ‘ 𝑊 )
3 lbssp.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lbsind.f 𝐹 = ( Scalar ‘ 𝑊 )
5 lbsind.s · = ( ·𝑠𝑊 )
6 lbsind.k 𝐾 = ( Base ‘ 𝐹 )
7 lbsind.z 0 = ( 0g𝐹 )
8 eldifsn ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴𝐾𝐴0 ) )
9 elfvdm ( 𝐵 ∈ ( LBasis ‘ 𝑊 ) → 𝑊 ∈ dom LBasis )
10 9 2 eleq2s ( 𝐵𝐽𝑊 ∈ dom LBasis )
11 1 4 5 6 2 3 7 islbs ( 𝑊 ∈ dom LBasis → ( 𝐵𝐽 ↔ ( 𝐵𝑉 ∧ ( 𝑁𝐵 ) = 𝑉 ∧ ∀ 𝑥𝐵𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) )
12 10 11 syl ( 𝐵𝐽 → ( 𝐵𝐽 ↔ ( 𝐵𝑉 ∧ ( 𝑁𝐵 ) = 𝑉 ∧ ∀ 𝑥𝐵𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) )
13 12 ibi ( 𝐵𝐽 → ( 𝐵𝑉 ∧ ( 𝑁𝐵 ) = 𝑉 ∧ ∀ 𝑥𝐵𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) )
14 13 simp3d ( 𝐵𝐽 → ∀ 𝑥𝐵𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) )
15 oveq2 ( 𝑥 = 𝐸 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐸 ) )
16 sneq ( 𝑥 = 𝐸 → { 𝑥 } = { 𝐸 } )
17 16 difeq2d ( 𝑥 = 𝐸 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝐸 } ) )
18 17 fveq2d ( 𝑥 = 𝐸 → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )
19 15 18 eleq12d ( 𝑥 = 𝐸 → ( ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
20 19 notbid ( 𝑥 = 𝐸 → ( ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
21 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 · 𝐸 ) = ( 𝐴 · 𝐸 ) )
22 21 eleq1d ( 𝑦 = 𝐴 → ( ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
23 22 notbid ( 𝑦 = 𝐴 → ( ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
24 20 23 rspc2v ( ( 𝐸𝐵𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ( ∀ 𝑥𝐵𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
25 14 24 syl5com ( 𝐵𝐽 → ( ( 𝐸𝐵𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) )
26 25 impl ( ( ( 𝐵𝐽𝐸𝐵 ) ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )
27 8 26 sylan2br ( ( ( 𝐵𝐽𝐸𝐵 ) ∧ ( 𝐴𝐾𝐴0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) )