Step |
Hyp |
Ref |
Expression |
1 |
|
lbsss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lbsss.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
3 |
|
lbssp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lbsind.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
lbsind.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
lbsind.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
7 |
|
lbsind.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
8 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) |
9 |
|
elfvdm |
⊢ ( 𝐵 ∈ ( LBasis ‘ 𝑊 ) → 𝑊 ∈ dom LBasis ) |
10 |
9 2
|
eleq2s |
⊢ ( 𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis ) |
11 |
1 4 5 6 2 3 7
|
islbs |
⊢ ( 𝑊 ∈ dom LBasis → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
13 |
12
|
ibi |
⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
14 |
13
|
simp3d |
⊢ ( 𝐵 ∈ 𝐽 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐸 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐸 ) ) |
16 |
|
sneq |
⊢ ( 𝑥 = 𝐸 → { 𝑥 } = { 𝐸 } ) |
17 |
16
|
difeq2d |
⊢ ( 𝑥 = 𝐸 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝐸 } ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑥 = 𝐸 → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
19 |
15 18
|
eleq12d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
20 |
19
|
notbid |
⊢ ( 𝑥 = 𝐸 → ( ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 · 𝐸 ) = ( 𝐴 · 𝐸 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
23 |
22
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
24 |
20 23
|
rspc2v |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
25 |
14 24
|
syl5com |
⊢ ( 𝐵 ∈ 𝐽 → ( ( 𝐸 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
26 |
25
|
impl |
⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
27 |
8 26
|
sylan2br |
⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |