| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leordtval.1 |
⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
| 2 |
|
leordtval.2 |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
| 3 |
|
icossxr |
⊢ ( -∞ [,) 𝑥 ) ⊆ ℝ* |
| 4 |
|
sseqin2 |
⊢ ( ( -∞ [,) 𝑥 ) ⊆ ℝ* ↔ ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 ) ) |
| 5 |
3 4
|
mpbi |
⊢ ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 ) |
| 6 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 7 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) |
| 8 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) |
| 11 |
|
mnfle |
⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) |
| 12 |
10 11
|
jccir |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ) |
| 13 |
12
|
biantrurd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 14 |
|
df-3an |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) ) |
| 15 |
13 14
|
bitr4di |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 16 |
|
xrltnle |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
| 17 |
16
|
ancoms |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
| 18 |
9 15 17
|
3bitr2d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
| 19 |
18
|
rabbi2dva |
⊢ ( 𝑥 ∈ ℝ* → ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 20 |
5 19
|
eqtr3id |
⊢ ( 𝑥 ∈ ℝ* → ( -∞ [,) 𝑥 ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 21 |
20
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 22 |
21
|
rneqi |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 23 |
2 22
|
eqtri |
⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |