Metamath Proof Explorer


Theorem lnopeqi

Description: Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopeq.1 𝑇 ∈ LinOp
lnopeq.2 𝑈 ∈ LinOp
Assertion lnopeqi ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 )

Proof

Step Hyp Ref Expression
1 lnopeq.1 𝑇 ∈ LinOp
2 lnopeq.2 𝑈 ∈ LinOp
3 1 lnopfi 𝑇 : ℋ ⟶ ℋ
4 3 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℋ )
5 hicl ( ( ( 𝑇𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑥 ) ∈ ℂ )
6 4 5 mpancom ( 𝑥 ∈ ℋ → ( ( 𝑇𝑥 ) ·ih 𝑥 ) ∈ ℂ )
7 2 lnopfi 𝑈 : ℋ ⟶ ℋ
8 7 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑈𝑥 ) ∈ ℋ )
9 hicl ( ( ( 𝑈𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∈ ℂ )
10 8 9 mpancom ( 𝑥 ∈ ℋ → ( ( 𝑈𝑥 ) ·ih 𝑥 ) ∈ ℂ )
11 6 10 subeq0ad ( 𝑥 ∈ ℋ → ( ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) − ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) = 0 ↔ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) )
12 hodval ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) − ( 𝑈𝑥 ) ) )
13 3 7 12 mp3an12 ( 𝑥 ∈ ℋ → ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇𝑥 ) − ( 𝑈𝑥 ) ) )
14 13 oveq1d ( 𝑥 ∈ ℋ → ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( ( 𝑇𝑥 ) − ( 𝑈𝑥 ) ) ·ih 𝑥 ) )
15 id ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ )
16 his2sub ( ( ( 𝑇𝑥 ) ∈ ℋ ∧ ( 𝑈𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇𝑥 ) − ( 𝑈𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) − ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) )
17 4 8 15 16 syl3anc ( 𝑥 ∈ ℋ → ( ( ( 𝑇𝑥 ) − ( 𝑈𝑥 ) ) ·ih 𝑥 ) = ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) − ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) )
18 14 17 eqtr2d ( 𝑥 ∈ ℋ → ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) − ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) = ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) )
19 18 eqeq1d ( 𝑥 ∈ ℋ → ( ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) − ( ( 𝑈𝑥 ) ·ih 𝑥 ) ) = 0 ↔ ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) )
20 11 19 bitr3d ( 𝑥 ∈ ℋ → ( ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ) )
21 20 ralbiia ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ ∀ 𝑥 ∈ ℋ ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 )
22 1 2 lnophdi ( 𝑇op 𝑈 ) ∈ LinOp
23 22 lnopeq0i ( ∀ 𝑥 ∈ ℋ ( ( ( 𝑇op 𝑈 ) ‘ 𝑥 ) ·ih 𝑥 ) = 0 ↔ ( 𝑇op 𝑈 ) = 0hop )
24 3 7 hosubeq0i ( ( 𝑇op 𝑈 ) = 0hop𝑇 = 𝑈 )
25 21 23 24 3bitri ( ∀ 𝑥 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑥 ) = ( ( 𝑈𝑥 ) ·ih 𝑥 ) ↔ 𝑇 = 𝑈 )